Acronym | ... |
Name | 4oct (?) |
Circumradius | 1/sqrt(2) = 0.707107 |
Vertex figure |
4[(6/2)4] (type A) 2[35,6/2,3,6/2]/2 (type B) |
General of army | oct |
Colonel of regiment | oct |
Confer |
|
Looks like a compound of 4 octahedra (oct), and indeed in type A vertices, edges coincide by 4, while {6/2} coincide by pairs, whereas in type B edges coincide by 4, vertices coincide by pairs, and triangles coincide by pairs with one {6/2} each.
Incidence matrix according to Dynkin symbol
x3/2x3β3*a (type A) both( . . . ) | 24 | 1 1 1 1 | 1 1 1 1 -------------------+----+-------------+-------- both( x . . ) | 2 | 12 * * * | 1 1 0 0 both( . x . ) | 2 | * 12 * * | 1 0 1 0 sefa( x . β3*a ) | 2 | * * 12 * | 0 1 0 1 sefa( . x3β ) | 2 | * * * 12 | 0 0 1 1 -------------------+----+-------------+-------- both( x3/2x . ) | 6 | 3 3 0 0 | 4 * * * x . β3*a ♦ 6 | 3 0 3 0 | * 4 * * . x3β ♦ 6 | 0 3 0 3 | * * 4 * sefa( x3/2x3β3*a ) | 6 | 0 0 3 3 | * * * 4
or both( . . . ) | 24 | 2 2 | 1 2 1 ----------------------+----+-------+------ both( x . . ) & | 2 | 24 * | 1 1 0 sefa( x . β3*a ) & | 2 | * 24 | 0 1 1 ----------------------+----+-------+------ both( x3/2x . ) | 6 | 6 0 | 4 * * x . β3*a & ♦ 6 | 3 3 | * 8 * sefa( x3/2x3β3*a ) | 6 | 0 6 | * * 4 starting figure: x3/2x3x3*a
β3/2x3β3*a (type B) demi( . . . ) | 12 | 2 4 2 | 1 2 2 3 -------------------+----+----------+--------- both( . x . ) | 2 | 12 * * | 1 0 1 0 sefa( s . s3*a ) | 2 | * 24 * | 0 1 0 1 sefa( . x3β ) | 2 | * * 12 | 0 0 1 1 -------------------+----+----------+--------- β3/2x . ♦ 3 | 3 0 0 | 4 * * * both( s . s3*a ) ♦ 3 | 0 3 0 | * 8 * * . x3β ♦ 6 | 3 0 3 | * * 4 * sefa( β3/2x3β3*a ) | 3 | 0 2 1 | * * * 12 starting figure: x3/2x3x3*a
© 2004-2025 | top of page |