Acronym | ... |
Name | Holosnub icosidodecahedron |
Circumradius | (1+sqrt(5))/2 = 1.618034 |
Vertex figure | [(3/2,4,5/2,4)2] |
Snub derivation |
|
Face vector | 30, 120, 62 |
No uniform realisation is possible.
Incidence matrix according to Dynkin symbol
o3β5o both( . . . ) | 30 | 4 4 | 2 2 4 --------------+----+-------+--------- sefa( o3β . ) | 2 | 60 * | 1 0 1 x sefa( . β5o ) | 2 | * 60 | 0 1 1 f --------------+----+-------+--------- o3β . ♦ 3 | 3 0 | 20 * * . β5o ♦ 5 | 0 5 | * 12 * sefa( o3β5o ) | 4 | 2 2 | * * 30 starting figure: o3x5o
x3o5/3f . . . | 30 | 4 4 | 2 4 2 --------+----+-------+--------- x . . | 2 | 60 * | 1 1 0 . . f | 2 | * 60 | 0 1 1 --------+----+-------+--------- x3o . | 3 | 3 0 | 20 * * x . f | 4 | 2 2 | * 30 * . o5/3f | 5 | 0 5 | * * 12
x3/2o5/2f . . . | 30 | 4 4 | 2 4 2 ----------+----+-------+--------- x . . | 2 | 60 * | 1 1 0 . . f | 2 | * 60 | 0 1 1 ----------+----+-------+--------- x3/2o . | 3 | 3 0 | 20 * * x . f | 4 | 2 2 | * 30 * . o5/2f | 5 | 0 5 | * * 12
(-x)3o5/2f . . . | 30 | 4 4 | 2 4 2 -----------+----+-------+--------- -x . . | 2 | 60 * | 1 1 0 . . f | 2 | * 60 | 0 1 1 -----------+----+-------+--------- (-x)3o . | 3 | 3 0 | 20 * * (-x) . f | 4 | 2 2 | * 30 * . o5/2f | 5 | 0 5 | * * 12
© 2004-2024 | top of page |