Acronym | ... |
Name | 2oct (?) |
Circumradius | 1/sqrt(2) = 0.707107 |
Vertex figure |
2[(6/2,3)2] (type A) [34; 34] (type B) |
Snub derivation |
(type A) |
General of army | oct |
Colonel of regiment | oct |
Confer |
|
Looks like a compound of 2 octahedra (oct), and indeed for type A vertices, edges, and {3} all coincide by pairs. Type B is nothing but that compound, only that the pairs coincident vertices are identified.
Incidence matrix according to Dynkin symbol
x3/2x3o3*a (type A) . . . | 12 | 2 2 | 2 1 1 -----------+----+-------+------ x . . | 2 | 12 * | 1 1 0 . x . | 2 | * 12 | 1 0 1 -----------+----+-------+------ x3/2x . | 6 | 3 3 | 4 * * x . o3*a | 3 | 3 0 | * 4 * . x3o | 3 | 0 3 | * * 4 snubbed forms: β3/2x3o3*a, β3/2β3o3*a
x3/2x3/2o3/2*a (type A) . . . | 12 | 2 2 | 2 1 1 ---------------+----+-------+------ x . . | 2 | 12 * | 1 1 0 . x . | 2 | * 12 | 1 0 1 ---------------+----+-------+------ x3/2x . | 6 | 3 3 | 4 * * x . o3/2*a | 3 | 3 0 | * 4 * . x3/2o | 3 | 0 3 | * * 4 snubbed forms: β3/2x3/2o3/2*a, β3/2β3/2o3/2*a
β3x3o (type A) both( . . . ) | 12 | 2 2 | 2 1 1 --------------+----+-------+------ both( . x . ) | 2 | 12 * | 1 1 0 sefa( β3x . ) | 2 | * 12 | 1 0 1 --------------+----+-------+------ β3x . ♦ 6 | 3 3 | 4 * * both( . x3o ) | 3 | 3 0 | * 4 * sefa( β3x3o ) | 3 | 0 3 | * * 4 starting figure: x3x3o
β3/2x3o3*a (type B) demi( . . . ) | 6 | 4 4 | 2 2 2 2 -------------------+---+-------+-------- both( . x . ) | 2 | 12 * | 1 1 0 0 sefa( β . o3*a ) | 2 | * 12 | 0 0 1 1 -------------------+---+-------+-------- both( . x3o ) | 3 | 3 0 | 4 * * * β3/2x . ♦ 3 | 3 0 | * 4 * * β . o3*a ♦ 3 | 0 3 | * * 4 * sefa( β3/2x3o3*a ) | 3 | 0 3 | * * * 4 starting figure: x3/2x3o3*a
β3/2x3/2o3/2*a (type B) demi( . . . ) | 6 | 4 4 | 2 2 2 2 -----------------------+---+-------+-------- both( . x . ) | 2 | 12 * | 1 1 0 0 sefa( β . o3/2*a ) | 2 | * 12 | 0 0 1 1 -----------------------+---+-------+-------- both( . x3/2o ) | 3 | 3 0 | 4 * * * β3/2x . ♦ 3 | 3 0 | * 4 * * β . o3/2*a ♦ 3 | 0 3 | * * 4 * sefa( β3/2x3/2o3/2*a ) | 3 | 0 3 | * * * 4 starting figure: x3/2x3/2o3/2*a
β3/2o3x (type A) both( . . . ) | 12 | 2 2 | 1 1 2 ----------------+----+-------+------ both( . . x ) | 2 | 12 * | 1 0 1 sefa( β3/2o . ) | 2 | * 12 | 0 1 1 ----------------+----+-------+------ both( . o3x ) | 3 | 3 0 | 4 * * β3/2o . ♦ 3 | 0 3 | * 4 * sefa( β3/2o3x ) | 6 | 3 3 | * * 4 starting figure: x3/2o3x
x3/2o3β (type A) both( . . . ) | 12 | 2 2 | 1 1 2 ----------------+----+-------+------ both( x . . ) | 2 | 12 * | 1 0 1 sefa( . o3β ) | 2 | * 12 | 0 1 1 ----------------+----+-------+------ both( x3/2o . ) | 3 | 3 0 | 4 * * . o3β ♦ 3 | 0 3 | * 4 * sefa( x3/2o3β ) | 6 | 3 3 | * * 4 starting figure: x3/2o3x
o3/2x3β (type A) both( . . . ) | 12 | 2 2 | 1 2 1 ----------------+----+-------+------ both( . x . ) | 2 | 12 * | 1 1 0 sefa( . x3β ) | 2 | * 12 | 0 1 1 ----------------+----+-------+------ both( o3/2x . ) | 3 | 3 0 | 4 * * . x3β ♦ 6 | 3 3 | * 4 * sefa( o3/2x3β ) | 3 | 0 3 | * * 4 starting figure: o3/2x3x
© 2004-2024 | top of page |