Acronym ... Name 2oct (?) Circumradius 1/sqrt(2) = 0.707107 Vertex figure 2[(6/2,3)2]   (type A) [34; 34]   (type B) Snub derivation `   (type A)` General of army oct Colonel of regiment oct Confer non-Grünbaumian master: oct   Grünbaumian relatives: 2oct+8{3}   2oct+6{4}   2oct+12{4}   4oct

Looks like a compound of 2 octahedra (oct), and indeed for type A vertices, edges, and {3} all coincide by pairs. Type B is nothing but that compound, only that the pairs coincident vertices are identified.

Incidence matrix according to Dynkin symbol

```x3/2x3o3*a   (type A)

.   . .    | 12 |  2  2 | 2 1 1
-----------+----+-------+------
x   . .    |  2 | 12  * | 1 1 0
.   x .    |  2 |  * 12 | 1 0 1
-----------+----+-------+------
x3/2x .    |  6 |  3  3 | 4 * *
x   . o3*a |  3 |  3  0 | * 4 *
.   x3o    |  3 |  0  3 | * * 4

snubbed forms: β3/2x3o3*a, β3/2β3o3*a
```

```x3/2x3/2o3/2*a   (type A)

.   .   .      | 12 |  2  2 | 2 1 1
---------------+----+-------+------
x   .   .      |  2 | 12  * | 1 1 0
.   x   .      |  2 |  * 12 | 1 0 1
---------------+----+-------+------
x3/2x   .      |  6 |  3  3 | 4 * *
x   .   o3/2*a |  3 |  3  0 | * 4 *
.   x3/2o      |  3 |  0  3 | * * 4

snubbed forms: β3/2x3/2o3/2*a, β3/2β3/2o3/2*a
```

```β3x3o   (type A)

both( . . . ) | 12 |  2  2 | 2 1 1
--------------+----+-------+------
both( . x . ) |  2 | 12  * | 1 1 0
sefa( β3x . ) |  2 |  * 12 | 1 0 1
--------------+----+-------+------
β3x .   ♦  6 |  3  3 | 4 * *
both( . x3o ) |  3 |  3  0 | * 4 *
sefa( β3x3o ) |  3 |  0  3 | * * 4

starting figure: x3x3o
```

```β3/2x3o3*a   (type B)

demi( .   . .    ) | 6 |  4  4 | 2 2 2 2
-------------------+---+-------+--------
both( .   x .    ) | 2 | 12  * | 1 1 0 0
sefa( β   . o3*a ) | 2 |  * 12 | 0 0 1 1
-------------------+---+-------+--------
both( .   x3o    ) | 3 |  3  0 | 4 * * *
β3/2x .      ♦ 3 |  3  0 | * 4 * *
β   . o3*a   ♦ 3 |  0  3 | * * 4 *
sefa( β3/2x3o3*a ) | 3 |  0  3 | * * * 4

starting figure: x3/2x3o3*a
```

```β3/2x3/2o3/2*a   (type B)

demi( .   .   .      ) | 6 |  4  4 | 2 2 2 2
-----------------------+---+-------+--------
both( .   x   .      ) | 2 | 12  * | 1 1 0 0
sefa( β     . o3/2*a ) | 2 |  * 12 | 0 0 1 1
-----------------------+---+-------+--------
both( .   x3/2o      ) | 3 |  3  0 | 4 * * *
β3/2x   .        ♦ 3 |  3  0 | * 4 * *
β     . o3/2*a   ♦ 3 |  0  3 | * * 4 *
sefa( β3/2x3/2o3/2*a ) | 3 |  0  3 | * * * 4

starting figure: x3/2x3/2o3/2*a
```

```β3/2o3x   (type A)

both( .   . . ) | 12 |  2  2 | 1 1 2
----------------+----+-------+------
both( .   . x ) |  2 | 12  * | 1 0 1
sefa( β3/2o . ) |  2 |  * 12 | 0 1 1
----------------+----+-------+------
both( .   o3x ) |  3 |  3  0 | 4 * *
β3/2o .   ♦  3 |  0  3 | * 4 *
sefa( β3/2o3x ) |  6 |  3  3 | * * 4

starting figure: x3/2o3x
```

```x3/2o3β   (type A)

both( .   . . ) | 12 |  2  2 | 1 1 2
----------------+----+-------+------
both( x   . . ) |  2 | 12  * | 1 0 1
sefa( .   o3β ) |  2 |  * 12 | 0 1 1
----------------+----+-------+------
both( x3/2o . ) |  3 |  3  0 | 4 * *
.   o3β   ♦  3 |  0  3 | * 4 *
sefa( x3/2o3β ) |  6 |  3  3 | * * 4

starting figure: x3/2o3x
```

```o3/2x3β   (type A)

both( .   . . ) | 12 |  2  2 | 1 2 1
----------------+----+-------+------
both( .   x . ) |  2 | 12  * | 1 1 0
sefa( .   x3β ) |  2 |  * 12 | 0 1 1
----------------+----+-------+------
both( o3/2x . ) |  3 |  3  0 | 4 * *
.   x3β   ♦  6 |  3  3 | * 4 *
sefa( o3/2x3β ) |  3 |  0  3 | * * 4

starting figure: o3/2x3x
```