Acronym n/d-p
TOCID symbol (n/d)P
Name n/d-prism,
n-prism with winding number d
VRML
  ©
Circumradius sqrt[1/4+1/(4 sin2(π d/n))]
Vertex figure [42,n/d]
General of army if d=1:   is itself convex
if gcd(n,d)=k:   use a (stretched) m-p for its general (with integral m=n/k)
Colonel of regiment (is itself locally convex)
Face vector 2n, 3n, n+2
Especially
3/d 4/d 5/d 6/d 7/d 8/d 9/d 10/d 12/d {n/d}-p
trip cube pip hip hep op ep dip twip n/1
    stip 2trip * ship 2cube * step 2pip * 2hip* n/2
        giship stop 3trip * stiddip 3cube * n/3
            gistep 2stip * 4trip * n/4
                stwip n/5
*: Grünbaumian
Confer
special pyramids:
n-p (d=1)  
Grünbaumian relatives:
2n/2-p  
variations:
(see within files according to individual n/d)  
ambification:
oqo-n/d-coc&#xt  
general polytopal classes:
Wythoffian polyhedra   segmentohedra  
External
links
wikipedia

Note that for d odd the 2 n/d-gram layers are aligned in a gyrated way, which then effects that top and bottom vertices are situated on gap. While for d even the 2 n/d-gram layers are still aligned in a gyrated way, but this time it effects in a seeming ungyrated parallel alignment, just like in the mere n/d-p, but now with crossed lacings, so that the according height becomes lesser than 1 here.


Incidence matrix according to Dynkin symbol

x xn/do (n>2,n/2>d>1)

. .   . | 2n | 1  2 | 2 1
--------+----+------+----
x .   . |  2 | n  * | 2 0
. x   . |  2 | * 2n | 1 1
--------+----+------+----
x x   . |  4 | 2  2 | n *
. xn/do |  n | 0  n | * 2

x2sn/ds   (n>2,n/2>d>1)

demi( . .   . ) | 2n | 1  2 | 1 2
----------------+----+------+----
demi( x .   . ) |  2 | n  * | 0 2
sefa( . sn/ds ) |  2 | * 2n | 1 1
----------------+----+------+----
      . sn/ds     n | 0  n | 2 *
sefa( x2sn/ds ) |  4 | 2  2 | * n

starting figure: x xn/dx

x2s2n/do   (n>2,n/2>d>1)

demi( . .    . ) | 2n | 1  2 | 1 2
-----------------+----+------+----
demi( x .    . ) |  2 | n  * | 0 2
sefa( . s2n/do ) |  2 | * 2n | 1 1
-----------------+----+------+----
      . s2n/do     n | 0  n | 2 *
sefa( x2s2n/do ) |  4 | 2  2 | * n

starting figure: x x2n/do

xxn/doo&#x   (n>2,n/2>d>1)   → height = 1
({n/d} || {n/d})

o.n/do.    | n * | 2 1 0 | 1 2 0
.on/d.o    | * n | 0 1 2 | 0 2 1
-----------+-----+-------+------
x.   ..    | 2 0 | n * * | 1 1 0
oon/doo&#x | 1 1 | * n * | 0 2 0
.x   ..    | 0 2 | * * n | 0 1 1
-----------+-----+-------+------
x.n/do.    | n 0 | n 0 0 | 1 * *
xx   ..&#x | 2 2 | 1 2 1 | * n *
.xn/d.o    | 0 n | 0 0 n | * * 1

© 2004-2025
top of page