Acronym n/2-ap
Name n/2 antiprism
 
 © ©
Circumradius sqrt[(32 cos(2π/n))/(88 cos(2π/n))]
Vertex figure [33,n/2]   (n odd)
2[33,n/2]   (n even)
General of army if n odd:   use a (stretched) n-p for its general
if n even:   (n:2)-ap
Colonel of regiment (is itself locally convex)
Especially trirp (n=3)   stap (n=5)  
Confer n-ap   n/d-ap  
External
links
wikipedia

n=3 (trirp) would result in the retrograde triangular antiprism with height of zero, i.e. all faces would coincide.

For n even this looks like a double cover of a (n:2)-antiprism (with winding number 1).


Incidence matrix according to Dynkin symbol

s2sn/2s   (n>3)

demi( . .   .  ) | 2n | 1 1  2 | 1  3
-----------------+----+--------+-----
      s2s   .      2 | n *  * | 0  2
      s .   s2*a   2 | * n  * | 0  2
sefa( . sn/2s  ) |  2 | * * 2n | 1  1
-----------------+----+--------+-----
      . sn/2s      n | 0 0  n | 2  *
sefa( s2sn/2s  ) |  3 | 1 1  1 | * 2n

β2βno   (n>2, odd)

both( . . .   ) | 2n | 1 1  2 | 1  3
----------------+----+--------+-----
      s2s . (r)   2 | n *  * | 0  2
      s2s . (l)   2 | * n  * | 0  2
sefa( . βno   ) |  2 | * * 2n | 1  1
----------------+----+--------+-----
      . βno   )   n | 0 0  n | 2  *
sefa( β2βno   ) |  3 | 1 1  1 | * 2n
or
both( . . . ) | 2n |  2  2 | 1  3
--------------+----+-------+-----
both( s2s . )   2 | 2n  * | 0  2
sefa( . βno ) |  2 |  * 2n | 1  1
--------------+----+-------+-----
      . βno     n |  0  n | 2  *
sefa( β2βno ) |  3 |  2  1 | * 2n

xon/2ox&#x   (n>3)   → height = sqrt[(1+2*cos(2pi/n))/(2+2*cos(2pi/n))]
({n/2} || dual {n/2})

o.n/2o.    | n * | 2  2 0 | 1 2 1 0
.on/2.o    | * n | 0  2 2 | 0 1 2 1
-----------+-----+--------+--------
x.   ..    | 2 0 | n  * * | 1 1 0 0
oon/2oo&#x | 1 1 | * 2n * | 0 1 1 0
..   .x    | 0 2 | *  * n | 0 0 1 1
-----------+-----+--------+--------
x.n/2o.    | n 0 | n  0 0 | 1 * * *
xo   ..&#x | 2 1 | 1  2 0 | * n * *
..   ox&#x | 1 2 | 0  2 1 | * * n *
.on/2.x    | 0 n | 0  0 n | * * * 1

© 2004-2019
top of page