Acronym 2n-p TOCID symbol (2n)P, t(n)P Name 2n-gonal prism Circumradius sqrt[1/4+1/(4 sin2(π/2n))] Vertex figure [42,2n] Snub derivation `     ` General of army (is itself convex) Colonel of regiment (is itself locally convex) Confer more general: 2n/d-p   Grünbaumian relatives: 2n/2-p Especially cube (n=2)   hip (n=3)   op (n=4)   dip (n=5)   twip (n=6)   azip (n=∞) Externallinks

Incidence matrix according to Dynkin symbol

```x x2no   (n>2)

. .  . | 4n |  1  2 |  2 1
-------+----+-------+-----
x .  . |  2 | 2n  * |  2 0
. x  . |  2 |  * 4n |  1 1
-------+----+-------+-----
x x  . |  4 |  2  2 | 2n *
. x2no | 2n |  0 2n |  * 2

snubbed forms: x2s2no, x2s2no (n even), s2s2no
```

```x xnx   (n>2)

. . . | 4n |  1  1  1 | 1 1 1
------+----+----------+------
x . . |  2 | 2n  *  * | 1 1 0
. x . |  2 |  * 2n  * | 1 0 1
. . x |  2 |  *  * 2n | 0 1 1
------+----+----------+------
x x . |  4 |  2  2  0 | n * *
x . x |  4 |  2  0  2 | * n *
. xnx | 2n |  0  n  n | * * 2

snubbed forms: x2βnx, x2snx (n even), β2βnx, s2snx (n even), x2sns, x2sns (n even), s2sns
```

```s2s2nx   (n>1)

demi( . .  . ) | 4n |  1  1  1 | 1  2
---------------+----+----------+-----
s2s      |  2 | 2n  *  * | 0  2
demi( . .  x ) |  2 |  * 2n  * | 1  1
sefa( . s2nx ) |  2 |  *  * 2n | 1  1
---------------+----+----------+-----
s2nx   ♦ 2n |  0  n  n | 2  *
sefa( s2s2nx ) |  4 |  2  1  1 | * 2n

starting figure: x x2nx
```

```x2s2nx   (n>1)

demi( . .  . ) | 4n |  1  1  1 | 1 1 1
---------------+----+----------+------
demi( x .  . ) |  2 | 2n  *  * | 0 1 1
demi( . .  x ) |  2 |  * 2n  * | 1 1 0
sefa( . s2nx ) |  2 |  *  * 2n | 1 0 1
---------------+----+----------+------
. s2nx   ♦ 2n |  0  n  n | 2 * *
demi( x .  x ) |  4 |  2  2  0 | * n *
sefa( x2s2nx ) |  4 |  2  0  2 | * * n

starting figure: x x2nx
```

```x2s2ns   (n>1)

demi( . .  . ) | 4n |  1  2 | 1  2
---------------+----+-------+-----
demi( x .  . ) |  2 | 2n  * | 0  2
sefa( . s2ns ) |  2 |  * 4n | 1  1
---------------+----+-------+-----
. s2ns   ♦ 2n |  0 2n | 2  *
sefa( x2s2ns ) |  4 |  2  2 | * 2n

starting figure: x x2nx
```

```x2s4no   (n>1)

demi( . .  . ) | 4n |  1  2 | 1  2
---------------+----+-------+-----
demi( x .  . ) |  2 | 2n  * | 0  2
sefa( . s4no ) |  2 |  * 4n | 1  1
---------------+----+-------+-----
. s4no   ♦ 2n |  0 2n | 2  *
sefa( x2s4no ) |  4 |  2  2 | * 2n

starting figure: x x4no
```

```xx2noo&#x   (n>2)   → height = 1
({2n} || {2n})

o.2no.    | 2n  * |  2  1  0 | 1  2 0
.o2n.o    |  * 2n |  0  1  2 | 0  2 1
----------+-------+----------+-------
x.  ..    |  2  0 | 2n  *  * | 1  1 0
oo2noo&#x |  1  1 |  * 2n  * | 0  2 0
.x  ..    |  0  2 |  *  * 2n | 0  1 1
----------+-------+----------+-------
x.2no.    | 2n  0 | 2n  0  0 | 1  * *
xx  ..&#x |  2  2 |  1  2  1 | * 2n *
.x2n.o    |  0 2n |  0  0 2n | *  * 1
```

```xxnxx&#x   (n>2)   → height = 1
({2n} || {2n})

o.no.    | 2n  * | 1 1  1 0 0 | 1 1 1 0
.on.o    |  * 2n | 0 0  1 1 1 | 0 1 1 1
---------+-------+------------+--------
x. ..    |  2  0 | n *  * * * | 1 1 0 0
.. x.    |  2  0 | * n  * * * | 1 0 1 0
oonoo&#x |  1  1 | * * 2n * * | 0 1 1 0
.x ..    |  0  2 | * *  * n * | 0 1 0 1
.. .x    |  0  2 | * *  * * n | 0 0 1 1
---------+-------+------------+--------
x.nx.    | 2n  0 | n n  0 0 0 | 1 * * *
xx ..&#x |  2  2 | 1 0  2 1 0 | * n * *
.. xx&#x |  2  2 | 0 1  2 0 1 | * * n *
.xn.x    |  0 2n | 0 0  0 n n | * * * 1
```