Acronym | 2n/d-p | ||||||||||||||||||||||||
TOCID symbol | t(n/d)P | ||||||||||||||||||||||||
Name |
2n/d-prism, 2n-prism with winding number d | ||||||||||||||||||||||||
Circumradius | sqrt[1/4+1/(4 sin2(π d/2n))] | ||||||||||||||||||||||||
Vertex figure | [42,2n/d] | ||||||||||||||||||||||||
General of army |
if d=1: is itself convex if gcd(2n,d)=1: use a (stretched) 2n-p for its general if gcd(2n,d)=2: use a (stretched) n-p for its general | ||||||||||||||||||||||||
Colonel of regiment | (is itself locally convex) | ||||||||||||||||||||||||
Face vector | 4n, 6n, 2n+2 | ||||||||||||||||||||||||
Especially |
2n-p (d=1)
2n/2-p (d=2)
| ||||||||||||||||||||||||
Confer |
|
For d even it looks like a compound of two n/(d:2)-prisms (see n/d-p), and indeed vertices, edges, and {4}-faces coincide by pairs.
Incidence matrix according to Dynkin symbol
x x2n/do (n/2>d>1) . . . | 4n | 1 2 | 2 1 ---------+----+-------+----- x . . | 2 | 2n * | 2 0 . x . | 2 | * 4n | 1 1 ---------+----+-------+----- x x . | 4 | 2 2 | 2n * . x2n/do | 2n | 0 2n | * 2 snubbed forms: x2s2n/do, s2s2n/do
x xn/dx (n/2>d>1) . . . | 4n | 1 1 1 | 1 1 1 --------+----+----------+------ x . . | 2 | 2n * * | 1 1 0 . x . | 2 | * 2n * | 1 0 1 . . x | 2 | * * 2n | 0 1 1 --------+----+----------+------ x x . | 4 | 2 2 0 | n * * x . x | 4 | 2 0 2 | * n * . xn/dx | 2n | 0 n n | * * 2 snubbed forms: x2sn/dx (n even), s2sn/dx (n even), x2sn/ds, x2sn/ds (n even), s2sn/ds
x2s2n/dx (n/2>d>1) demi( . . . ) | 4n | 1 1 1 | 1 1 1 -----------------+----+----------+------ demi( x . . ) | 2 | 2n * * | 0 1 1 demi( . . x ) | 2 | * 2n * | 1 1 0 sefa( . s2n/dx ) | 2 | * * 2n | 1 0 1 -----------------+----+----------+------ . s2n/dx ♦ 2n | 0 n n | 2 * * demi( x . x ) | 4 | 2 2 0 | * n * sefa( x2s2n/dx ) | 4 | 2 0 2 | * * n starting figure: x x2n/dx
x2s2n/ds (n/2>d>1) demi( . . . ) | 4n | 1 2 | 1 2 -----------------+----+-------+----- demi( x . . ) | 2 | 2n * | 0 2 sefa( . s2n/ds ) | 2 | * 4n | 1 1 -----------------+----+-------+----- . s2n/ds ♦ 2n | 0 2n | 2 * sefa( x2s2n/ds ) | 4 | 2 2 | * 2n starting figure: x x2n/dx
s2s2n/dx (n/2>d>1) demi( . . . ) | 4n | 1 1 1 | 1 2 -----------------+----+----------+----- s2s | 2 | 2n * * | 0 2 demi( . . x ) | 2 | * 2n * | 1 1 sefa( . s2n/dx ) | 2 | * * 2n | 1 1 -----------------+----+----------+----- s2n/dx ♦ 2n | 0 n n | 2 * sefa( s2s2n/dx ) | 4 | 2 1 1 | * 2n starting figure: x x2n/dx
xx2n/doo&#x (n/2>d>1) → height = 1
({2n/d} || {2n/d})
o.2n/do. | 2n * | 2 1 0 | 1 2 0
.o2n/d.o | * 2n | 0 1 2 | 0 2 1
------------+-------+----------+-------
x. .. | 2 0 | 2n * * | 1 1 0
oo2n/doo&#x | 1 1 | * 2n * | 0 2 0
.x .. | 0 2 | * * 2n | 0 1 1
------------+-------+----------+-------
x.2n/do. | 2n 0 | 2n 0 0 | 1 * *
xx ..&#x | 2 2 | 1 2 1 | * 2n *
.x2n/d.o | 0 2n | 0 0 2n | * * 1
xxn/dxx&#x (n/2>d>1) → height = 1
({2n/d} || {2n/d})
o.n/do. | 2n * | 1 1 1 0 0 | 1 1 1 0
.on/d.o | * 2n | 0 0 1 1 1 | 0 1 1 1
-----------+-------+------------+--------
x. .. | 2 0 | n * * * * | 1 1 0 0
.. x. | 2 0 | * n * * * | 1 0 1 0
oon/doo&#x | 1 1 | * * 2n * * | 0 1 1 0
.x .. | 0 2 | * * * n * | 0 1 0 1
.. .x | 0 2 | * * * * n | 0 0 1 1
-----------+-------+------------+--------
x.n/dx. | 2n 0 | n n 0 0 0 | 1 * * *
xx ..&#x | 2 2 | 1 0 2 1 0 | * n * *
.. xx&#x | 2 2 | 0 1 2 0 1 | * * n *
.xn/d.x | 0 2n | 0 0 0 n n | * * * 1
© 2004-2025 | top of page |