Acronym | ... |
Name | 2ico+2gico (?) |
Circumradius | 1 |
Coordinates |
|
General of army | ico |
Colonel of regiment | ico |
Confer |
|
Looks like a vertex-coincident compound of 2 icositetrachora (ico) and 6 tesseracts (tes). – The latter part itself can be looked at either as a compound of 3 Grünbaumian double covered tesseracts (2tes) or as a double cover of 2 great icositetrachora (gico).
Its vertex figure is a 2quith variant, where the {6/2}-edges are of size q. That one in turn looks like a double cover of a figure which is a vertex-coincident compound of a cube and a q-scaled stella octangula (so, i.e. the regular compound of 2 tet).
Incidence matrix according to Dynkin symbol
x4o4o4o4*a3/2*c *b3/2*d . . . . | 24 | 48 | 24 24 24 | 6 8 6 ------------------------+----+-----+-------------+--------- x . . . | 2 | 576 | 1 1 1 | 1 1 1 ------------------------+----+-----+-------------+--------- x4o . . | 4 | 4 | 144 * * | 1 1 0 x . o . *a3/2*c | 3 | 3 | * 192 * | 1 0 1 x . . o4*a | 4 | 4 | * * 144 | 0 1 1 ------------------------+----+-----+-------------+--------- x4o4o . *a3/2*c ♦ 6 | 24 | 6 8 0 | 24 * * x4o . o4*a *b3/2*d ♦ 8 | 24 | 6 0 6 | * 24 * x . o4o4*a3/2*c ♦ 6 | 24 | 0 8 6 | * * 24
or . . . . | 24 | 48 | 48 24 | 12 8 --------------------------+----+-----+---------+------ x . . . | 2 | 576 | 2 1 | 2 1 --------------------------+----+-----+---------+------ x4o . . & | 4 | 4 | 288 * | 1 1 x . o . *a3/2*c | 3 | 3 | * 192 | 2 0 --------------------------+----+-----+---------+------ x4o4o . *a3/2*c & ♦ 6 | 24 | 6 8 | 48 * x4o . o4*a *b3/2*d ♦ 8 | 24 | 12 0 | * 24
x4o4o4/3o4/3*a3/2*c *b3*d . . . . | 24 | 48 | 24 24 24 | 6 8 6 --------------------------+----+-----+-------------+--------- x . . . | 2 | 576 | 1 1 1 | 1 1 1 --------------------------+----+-----+-------------+--------- x4o . . | 4 | 4 | 144 * * | 1 1 0 x . o . *a3/2*c | 3 | 3 | * 192 * | 1 0 1 x . . o4/3*a | 4 | 4 | * * 144 | 0 1 1 --------------------------+----+-----+-------------+--------- x4o4o . *a3/2*c ♦ 6 | 24 | 6 8 0 | 24 * * x4o . o4/3*a *b3*d ♦ 8 | 24 | 6 0 6 | * 24 * x . o4/3o4/3*a3/2*c ♦ 6 | 24 | 0 8 6 | * * 24
x4o4/3o4o4/3*a3*c *b3*d . . . . | 24 | 48 | 24 24 24 | 6 8 6 ------------------------+----+-----+-------------+--------- x . . . | 2 | 576 | 1 1 1 | 1 1 1 ------------------------+----+-----+-------------+--------- x4o . . | 4 | 4 | 144 * * | 1 1 0 x . o . *a3*c | 3 | 3 | * 192 * | 1 0 1 x . . o4/3*a | 4 | 4 | * * 144 | 0 1 1 ------------------------+----+-----+-------------+--------- x4o4/3o . *a3*c ♦ 6 | 24 | 6 8 0 | 24 * * x4o . o4/3*a *b3*d ♦ 8 | 24 | 6 0 6 | * 24 * x . o4o4/3*a3*c ♦ 6 | 24 | 0 8 6 | * * 24
x4o4/3o4/3o4*a3*c *b3/2*d . . . . | 24 | 48 | 24 24 24 | 6 8 6 --------------------------+----+-----+-------------+--------- x . . . | 2 | 576 | 1 1 1 | 1 1 1 --------------------------+----+-----+-------------+--------- x4o . . | 4 | 4 | 144 * * | 1 1 0 x . o . *a3*c | 3 | 3 | * 192 * | 1 0 1 x . . o4*a | 4 | 4 | * * 144 | 0 1 1 --------------------------+----+-----+-------------+--------- x4o4/3o . *a3*c ♦ 6 | 24 | 6 8 0 | 24 * * x4o . o4*a *b3/2*d ♦ 8 | 24 | 6 0 6 | * 24 * x . o4/3o4*a3*c ♦ 6 | 24 | 0 8 6 | * * 24
or . . . . | 24 | 48 | 48 24 | 12 8 ----------------------------+----+-----+---------+------ x . . . | 2 | 576 | 2 1 | 2 1 ----------------------------+----+-----+---------+------ x4o . . & | 4 | 4 | 288 * | 1 1 x . o . *a3*c | 3 | 3 | * 192 | 2 0 ----------------------------+----+-----+---------+------ x4o4/3o . *a3*c & ♦ 6 | 24 | 6 8 | 48 * x4o . o4*a *b3/2*d ♦ 8 | 24 | 12 0 | * 24
x4/3o4o4o4/3*a3*c *b3/2*d . . . . | 24 | 48 | 24 24 24 | 6 8 6 --------------------------+----+-----+-------------+--------- x . . . | 2 | 576 | 1 1 1 | 1 1 1 --------------------------+----+-----+-------------+--------- x4/3o . . | 4 | 4 | 144 * * | 1 1 0 x . o . *a3*c | 3 | 3 | * 192 * | 1 0 1 x . . o4/3*a | 4 | 4 | * * 144 | 0 1 1 --------------------------+----+-----+-------------+--------- x4/3o4o . *a3*c ♦ 6 | 24 | 6 8 0 | 24 * * x4/3o . o4/3*a *b3/2*d ♦ 8 | 24 | 6 0 6 | * 24 * x . o4o4/3*a3*c ♦ 6 | 24 | 0 8 6 | * * 24
or . . . . | 24 | 48 | 48 24 | 12 8 ----------------------------+----+-----+---------+------ x . . . | 2 | 576 | 2 1 | 2 1 ----------------------------+----+-----+---------+------ x4/3o . . & | 4 | 4 | 288 * | 1 1 x . o . *a3*c | 3 | 3 | * 192 | 2 0 ----------------------------+----+-----+---------+------ x4/3o4o . *a3*c & ♦ 6 | 24 | 6 8 | 48 * x4/3o . o4/3*a *b3/2*d ♦ 8 | 24 | 12 0 | * 24
x4/3o4/3o4/3o4/3*a3/2*c *b3/2*d . . . . | 24 | 48 | 24 24 24 | 6 8 6 --------------------------------+----+-----+-------------+--------- x . . . | 2 | 576 | 1 1 1 | 1 1 1 --------------------------------+----+-----+-------------+--------- x4/3o . . | 4 | 4 | 144 * * | 1 1 0 x . o . *a3/2*c | 3 | 3 | * 192 * | 1 0 1 x . . o4/3*a | 4 | 4 | * * 144 | 0 1 1 --------------------------------+----+-----+-------------+--------- x4/3o4/3o . *a3/2*c ♦ 6 | 24 | 6 8 0 | 24 * * x4/3o . o4/3*a *b3/2*d ♦ 8 | 24 | 6 0 6 | * 24 * x . o4/3o4/3*a3/2*c ♦ 6 | 24 | 0 8 6 | * * 24
or . . . . | 24 | 48 | 48 24 | 12 8 ----------------------------------+----+-----+---------+------ x . . . | 2 | 576 | 2 1 | 2 1 ----------------------------------+----+-----+---------+------ x4/3o . . & | 4 | 4 | 288 * | 1 1 x . o . *a3/2*c | 3 | 3 | * 192 | 2 0 ----------------------------------+----+-----+---------+------ x4/3o4/3o . *a3/2*c & ♦ 6 | 24 | 6 8 | 48 * x4/3o . o4/3*a *b3/2*d ♦ 8 | 24 | 12 0 | * 24
© 2004-2024 | top of page |