Site Map Polytopes Dynkin Diagrams Vertex Figures, etc. Incidence Matrices Index

Twin polytopes

A pair of polytopes is considered to be a twin, if its face vector vec(f) = (f0, f1, f2, ...) = (V, E, F, ...), i.e. the total count of elements wrt. every single subdimension, would be exactly the same, but still the polytopes are neither somehow scaled or moved variants of each other, neither are conjugates – like {5, 5/2} (gad) and {5/2, 5} (sissid) – nor even are different realisations of the same abstract polytope.

This even could be driven to the outermost point when considering for instance the pair x3/2o5x5*a (saddid) and x5/3o3x5*a (sidditdid), which not only have all the same elements throughout but also have all the same respective incidences of types too. Therefore these well feature exactly the same incidence matrices – when considering symmetry equivalence classes. However when considering the mere 0-1-matrices instead, i.e. the true representation of the respective abstract polytopes, then it occurs that they well differ within the respective pseudo faces, which are squares in the former, hexagons in the latter case. Thus indeed, in a very limiting reading those indeed could be considered twins. But sure, the very purpose of considering twins, i.e. comparing qualitatively different polytopes with same facet vectors then would still not be met for obvious reasons: their incidence matrices (by equivalence classes of symmetry) still coincides.

Further trivial twins will be provided here only in a mere shortlist. Those then are sorts like multidiminishings at different locations and/or according gyrations.

After sieving out all those various types of mutual closeness, the remainder of this page will be concerned within the following table of known "true" twin polytopes. Accordingly they then show up largely different incidence matrices – even when given by symmetry type. And for sure, this then not only occurs because of representation wrt. a different (sub)symmetry or orientation.

It shall be emphasized that whenever a pair of polytopes happens to be a twin (within any of the above readings), then clearly the pair of respective prisms or of duoprisms with any common further factor will take over the same property.

3D

f0 = 7
f1 = 12
f2 = 7
elongated triangular pyramid
oxx3ooo&#xt   → height(1,2) = sqrt(3/8) = 0.612372
                height(2,3) = 1

o..3o..    | 1 * * | 3 0 0 0 | 3 0 0
.o.3.o.    | * 3 * | 1 2 1 0 | 2 2 0
..o3..o    | * * 3 | 0 0 1 2 | 0 2 1
-----------+-------+---------+------
oo.3oo.&#x | 1 1 0 | 3 * * * | 2 0 0
.x. ...    | 0 2 0 | * 3 * * | 1 1 0
.oo3.oo&#x | 0 1 1 | * * 3 * | 0 2 0
..x ...    | 0 0 2 | * * * 3 | 0 1 1
-----------+-------+---------+------
ox. ...&#x | 1 2 0 | 2 1 0 0 | 3 * *
.xx ...&#x | 0 2 2 | 0 1 2 1 | * 3 *
..x3..o    | 0 0 3 | 0 0 0 3 | * * 1
hexagonal hexagonal pyramid
ox6oo&#y   → height = sqrt(y2-1)
             where y > 1

tip  o.6o.    | 1 * | 6 0 | 6 0
base .o6.o    | * 6 | 1 2 | 2 1
--------------+-----+-----+----
lace oo6oo&#y | 1 1 | 6 * | 2 0
base .x ..    | 0 2 | * 6 | 1 1
--------------+-----+-----+----
coat ox ..&#y | 1 2 | 2 1 | 6 *
base .x6.o    | 0 6 | 0 6 | * 1
3D

f0 = 8
f1 = 18
f2 = 12
snub disphenoid
xoBo oBox&#xt   → outer heights = 0.578369
                  inner height = 0.411123
                  where B = 1.289169 (pseudo)

o... o...    & | 4 * | 1 2 1 0 | 2 2
.o.. .o..    & | * 4 | 0 2 1 2 | 1 4
---------------+-----+---------+----
x... ....    & | 2 0 | 2 * * * | 2 0
oo.. oo..&#x & | 1 1 | * 8 * * | 1 1
o.o. o.o.&#x & | 1 1 | * * 4 * | 0 2
.oo. .oo.&#x   | 0 2 | * * * 4 | 0 2
---------------+-----+---------+----
xo.. ....&#x & | 2 1 | 1 2 0 0 | 4 *
ooo. ooo.&#x & | 1 2 | 0 1 1 1 | * 8
hexagonal bipyramid
oxo6ooo&#yt   → both heights = sqrt(y2-1)
                where y > 1

o..6o..    | 1 * * | 6 0 0 | 6 0
.o.6.o.    | * 6 * | 1 2 1 | 2 2
..o6..o    | * * 1 | 0 0 6 | 0 6
-----------+-------+-------+----
oo.6oo.&#y | 1 1 0 | 6 * * | 2 0
.x. ...    | 0 2 0 | * 6 * | 1 1
.oo6.oo&#y | 0 1 1 | * * 6 | 0 2
-----------+-------+-------+----
ox. ...&#y | 1 2 0 | 2 1 0 | 6 *
.xo ...&#y | 0 2 1 | 0 1 2 | * 6
3D

f0 = 12
f1 = 24
f2 = 14
cuboctahedron
o3x4o

o3o4o | 12 |  4 | 2 2
------+----+----+----
. x . |  2 | 24 | 1 1
------+----+----+----
o3x . |  3 |  3 | 8 *
. x4o |  4 |  4 | * 6
(or trigonal orthobicupola, cf. above)
hexagonal antiprism
xo6ox&#x   → height = sqrt[sqrt(3)-1] = 0.855600

o.6o.    | 6 * | 2  2 0 | 1 2 1 0
.o6.o    | * 6 | 0  2 2 | 0 1 2 1
---------+-----+--------+--------
x. ..    | 2 0 | 6  * * | 1 1 0 0
oo6oo&#x | 1 1 | * 12 * | 0 1 1 0
.. .x    | 0 2 | *  * 6 | 0 0 1 1
---------+-----+--------+--------
x.6o.    | 6 0 | 6  0 0 | 1 * * *
xo ..&#x | 2 1 | 1  2 0 | * 6 * *
.. ox&#x | 1 2 | 0  2 1 | * * 6 *
.o6.x    | 0 6 | 0  0 6 | * * * 1
3D

f0 = 12
f1 = 30
f2 = 20
icosahedron
x3o5o

o3o5o | 12 |  5 |  5
------+----+----+---
x . . |  2 | 30 |  2
------+----+----+---
x3o . |  3 |  3 | 20
decagonal bipyramid
oxo10ooo&#yt   → both heights = sqrt(y2-f2)
                 where y > f = (1+sqrt(5))/2 = 1.618034

o..10o..    | 1  * * | 10  0  0 | 10  0
.o.10.o.    | * 10 * |  1  2  1 |  2  2
..o10..o    | *  * 1 |  0  0 10 |  0 10
------------+--------+----------+------
oo.10oo.&#y | 1  1 0 | 10  *  * |  2  0
.x.  ...    | 0  2 0 |  * 10  * |  1  1
.oo10.oo&#y | 0  1 1 |  *  * 10 |  0  2
------------+--------+----------+------
ox.  ...&#y | 1  2 0 |  2  1  0 | 10  *
.xo  ...&#y | 0  2 1 |  0  1  2 |  * 10
3D

f0 = 14
f1 = 26
f2 = 14
bilunabirotunda
xfofx oxfxo&#xt   → outer heights = (1+sqrt(5))/4 = 0.809017
                    inner heights = 1/2

o.... o....      & | 4 * * | 1 2 0 0 0 | 1 2 0 0
.o... .o...      & | * 8 * | 0 1 1 1 1 | 1 1 1 1
..o.. ..o..        | * * 2 | 0 0 0 4 0 | 0 2 0 2
-------------------+-------+-----------+--------
x.... .....      & | 2 0 0 | 2 * * * * | 0 2 0 0
oo... oo...&#x   & | 1 1 0 | * 8 * * * | 1 1 0 0
..... .x...      & | 0 2 0 | * * 4 * * | 1 0 1 0
.oo.. .oo..&#x   & | 0 1 1 | * * * 8 * | 0 1 0 1
.o.o. .o.o.&#x     | 0 2 0 | * * * * 4 | 0 0 1 1
-------------------+-------+-----------+--------
..... ox...&#x   & | 1 2 0 | 0 2 1 0 0 | 4 * * *  {3}
xfo.. .....&#xt  & | 2 2 1 | 1 2 0 2 0 | * 4 * *  {5}
..... .x.x.&#x     | 0 4 0 | 0 0 2 0 2 | * * 2 *  {4}
.ooo. .ooo.&#xt    | 0 2 1 | 0 0 0 2 1 | * * * 4  {3}
parabiaugmented hexagonal prism
oxxxo oxuxo&#xt   → outer heights = 1/sqrt(2) = 0.707107
                    inner heights = sqrt(3)/2 = 0.866025

o.... o....      & | 2 * * | 4 0 0 0 0 | 2 2 0 0
.o... .o...      & | * 8 * | 1 1 1 1 0 | 1 1 1 1
..o.. ..o..        | * * 4 | 0 0 0 2 1 | 0 0 2 1
-------------------+-------+-----------+--------
oo... oo...&#x   & | 1 1 0 | 8 * * * * | 1 1 0 0
.x... .....      & | 0 2 0 | * 4 * * * | 1 0 1 0
..... .x...      & | 0 2 0 | * * 4 * * | 0 1 0 1
.oo.. .oo..&#x   & | 0 1 1 | * * * 8 * | 0 0 1 1
..x.. .....        | 0 0 2 | * * * * 2 | 0 0 2 0
-------------------+-------+-----------+--------
ox... .....&#x   & | 1 2 0 | 2 1 0 0 0 | 4 * * *  {3}
..... ox...&#x   & | 1 2 0 | 2 0 1 0 0 | * 4 * *  {3}
.xx.. .....&#x   & | 0 2 2 | 0 1 0 2 1 | * * 4 *  {4}
..... .xux.&#xt    | 0 4 2 | 0 0 2 4 0 | * * * 2  {6}
(or metabiaugmented ..., cf. above)
3D

f0 = 20
f1 = 30
f2 = 12
dodecahedron
o3o5x

o3o5o | 20 |  3 |  3
------+----+----+---
. . x |  2 | 30 |  2
------+----+----+---
. o5x |  5 |  5 | 12
decagonal prism
x x10o

o o10o | 20 |  1  2 |  2 1
-------+----+-------+-----
x .  . |  2 | 10  * |  2 0
. x  . |  2 |  * 20 |  1 1
-------+----+-------+-----
x x  . |  4 |  2  2 | 10 *
. x10o | 10 |  0 10 |  * 2
3D

f0 = 24
f1 = 36
f2 = 14
truncated cube
o3x4x

. . . | 24 |  2  1 | 1 2
------+----+-------+----
. x . |  2 | 24  * | 1 1
. . x |  2 |  * 12 | 0 2
------+----+-------+----
o3x . |  3 |  3  0 | 8 *
. x4x |  8 |  4  4 | * 6
truncated octahedron
x3x4o

. . . | 24 |  1  2 | 2 1
------+----+-------+----
x . . |  2 | 12  * | 2 0
. x . |  2 |  * 24 | 1 1
------+----+-------+----
x3x . |  6 |  3  3 | 8 *
. x4o |  4 |  0  4 | * 6
3D

f0 = 30
f1 = 60
f2 = 32
icosidodecahedron
o3x5o

o3o5o | 30 |  4 |  2  2
------+----+----+------
. x . |  2 | 60 |  1  1
------+----+----+------
o3x . |  3 |  3 | 20  *
. x5o |  5 |  5 |  * 12
(or pentagonal orthobirotunda, cf. above)
elongated pentagonal orthobicupola
xxxx5oxxo&#xt   → outer heights = sqrt((5-sqrt(5))/10) = 0.525731
                  inner height = 1

o...5o...    & | 10  * |  2  2  0  0  0 | 1  2  1 0 0
.o..5.o..    & |  * 20 |  0  1  1  1  1 | 0  1  1 1 1
---------------+-------+----------------+------------
x... ....    & |  2  0 | 10  *  *  *  * | 1  1  0 0 0
oo..5oo..&#x & |  1  1 |  * 20  *  *  * | 0  1  1 0 0
.x.. ....    & |  0  2 |  *  * 10  *  * | 0  1  0 1 0
.... .x..    & |  0  2 |  *  *  * 10  * | 0  0  1 0 1
.oo.5.oo.&#x   |  0  2 |  *  *  *  * 10 | 0  0  0 1 1
---------------+-------+----------------+------------
x...5o...    & |  5  0 |  5  0  0  0  0 | 2  *  * * *
xx.. ....&#x & |  2  2 |  1  2  1  0  0 | * 10  * * *
.... ox..&#x & |  1  2 |  0  2  0  1  0 | *  * 10 * *
.xx. ....&#x   |  0  4 |  0  0  2  0  2 | *  *  * 5 *
.... .xx.&#x   |  0  4 |  0  0  0  2  2 | *  *  * * 5
(or ... gyrobicupola, cf. above)
3D

f0 = 60
f1 = 90
f2 = 32
truncated icosahedron
x3x5o

o3o5o | 60 |  1  2 |  2  1
------+----+-------+------
x . . |  2 | 30  * |  2  0
. x . |  2 |  * 60 |  1  1
------+----+-------+------
x3x . |  6 |  3  3 | 20  *
. x5o |  5 |  0  5 |  * 12
truncated dodecahedron
o3x5x

. . . | 60 |  2  1 |  1  2
------+----+-------+------
. x . |  2 | 60  * |  1  1
. . x |  2 |  * 30 |  0  2
------+----+-------+------
o3x . |  3 |  3  0 | 20  *
. x5x | 10 |  5  5 |  * 12
4D

f0 = 2400
f1 = 10800
f2 = 7680
f3 = 960
small tritrigonal trishecatonicosihexacosachoron
x3x3o3o5/4*a5/2*c

. . . .           | 2400 |    6    3 |    6    3    3    3 |   3   3   1   1
------------------+------+-----------+---------------------+----------------
x . . .           |    2 | 7200    * |    1    1    1    0 |   1   1   1   0
. x . .           |    2 |    * 3600 |    2    0    0    2 |   2   1   0   1
------------------+------+-----------+---------------------+----------------
x3x . .           |    6 |    3    3 | 2400    *    *    * |   1   1   0   0
x . o .   *a5/2*c |    5 |    5    0 |    * 1440    *    * |   1   0   1   0
x . . o5/4*a      |    5 |    5    0 |    *    * 1440    * |   0   1   1   0
. x3o .           |    3 |    0    3 |    *    *    * 2400 |   1   0   0   1
------------------+------+-----------+---------------------+----------------
x3x3o .   *a5/2*c    60 |   60   60 |   20   12    0   20 | 120   *   *   *
x3x . o5/4*a         60 |   60   30 |   20    0   12    0 |   * 120   *   *
x . o3o5/4*a5/2*c    20 |   60    0 |    0   12   12    0 |   *   * 120   *
. x3o3o               4 |    0    6 |    0    0    0    4 |   *   *   * 600
small tritrigonal hexacositrishecatonicosachoron
o3o3x5x3*a5/4*c

. . . .         | 2400 |    6    3 |    3    3    3    6 |   1   1   3   3
----------------+------+-----------+---------------------+----------------
. . x .         |    2 | 7200    * |    1    0    1    1 |   1   0   1   1
. . . x         |    2 |    * 3600 |    0    2    0    2 |   0   1   2   1
----------------+------+-----------+---------------------+----------------
o . x . *a5/4*c |    5 |    5    0 | 1440    *    *    * |   1   0   1   0
o . . x3*a      |    3 |    0    3 |    * 2400    *    * |   0   1   1   0
. o3x .         |    3 |    3    0 |    *    * 2400    * |   1   0   0   1
. . x5x         |   10 |    5    5 |    *    *    * 1440 |   0   0   1   1
----------------+------+-----------+---------------------+----------------
o3o3x . *a5/4*c    20 |   60    0 |   12    0   20    0 | 120   *   *   *
o3o . x3*a          4 |    0    6 |    0    4    0    0 |   * 600   *   *
o . x5x3*a5/4*c    60 |   60   60 |   12   20    0   12 |   *   * 120   *
. o3x5x            60 |   60   30 |    0    0   20   12 |   *   *   * 120

© 2004-2024
top of page