Acronym | ... |
Name | 2ico (?) |
Circumradius | 1 |
Coordinates |
|
General of army | ico |
Colonel of regiment | ico |
Confer |
|
Comes in 2 different types. Both look like a compound of 2 coincident icositetrachora (ico). Type A uses Grünbaumian elements and all others are pairwise coincident. Type B identifies vertices and edges, but uses singly wrapped elements only (using a Grünbaumian vertex figure.
Incidence matrix according to Dynkin symbol
β3x3o4o (Type A) both( . . . . ) | 48 ♦ 4 4 | 4 4 4 | 1 4 1 ----------------+----+-------+----------+------- both( . x . . ) | 2 | 96 * | 2 1 0 | 1 2 0 sefa( β3x . . ) | 2 | * 96 | 0 1 2 | 0 2 1 ----------------+----+-------+----------+------- both( . x3o . ) | 3 | 3 0 | 64 * * | 1 1 0 β3x . . ♦ 6 | 3 3 | * 32 * | 0 2 0 sefa( β3x3o . ) | 3 | 0 3 | * * 64 | 0 1 1 ----------------+----+-------+----------+------- both( . x3o4o ) ♦ 6 | 12 0 | 8 0 0 | 8 * * β3x3o . ♦ 12 | 12 12 | 4 4 4 | * 16 * sefa( β3x3o4o ) ♦ 6 | 0 12 | 0 0 8 | * * 8 starting figure: x3x3o4o
β3x3o *b3o (Type A) both( . . . . ) | 48 ♦ 4 4 | 2 2 4 2 2 | 1 2 2 1 -------------------+----+-------+----------------+-------- both( . x . . ) | 2 | 96 * | 1 1 1 0 0 | 1 1 1 0 sefa( β3x . . ) | 2 | * 96 | 0 0 1 1 1 | 0 1 1 1 -------------------+----+-------+----------------+-------- both( . x3o . ) | 3 | 3 0 | 32 * * * * | 1 1 0 0 both( . x . *b3o ) | 3 | 3 0 | * 32 * * * | 1 0 1 0 β3x . . ♦ 6 | 3 3 | * * 32 * * | 0 1 1 0 sefa( β3x3o . ) | 3 | 0 3 | * * * 32 * | 0 1 0 1 sefa( β3x . *b3o ) | 3 | 0 3 | * * * * 32 | 0 0 1 1 -------------------+----+-------+----------------+-------- both( . x3o *b3o ) ♦ 6 | 12 0 | 4 4 0 0 0 | 8 * * * β3x3o . ♦ 12 | 12 12 | 4 0 4 4 0 | * 8 * * β3x . *b3o ♦ 12 | 12 12 | 0 4 4 0 4 | * * 8 * sefa( β3x3o *b3o ) ♦ 6 | 0 12 | 0 0 0 4 4 | * * * 8 starting figure: x3x3o *b3o
x3o4o3o4/3*b (Type B) . . . . | 24 ♦ 8 | 24 | 6 6 -------------+----+----+-----+------ x . . . | 2 | 96 | 6 | 3 3 -------------+----+----+-----+------ x3o . . | 3 | 3 | 192 | 1 1 -------------+----+----+-----+------ x3o4o . ♦ 6 | 12 | 8 | 24 * x3o . o4/3*b ♦ 6 | 12 | 8 | * 24
x3o4o3/2o4*b (Type B) . . . . | 24 ♦ 8 | 24 | 6 6 -------------+----+----+-----+------ x . . . | 2 | 96 | 6 | 3 3 -------------+----+----+-----+------ x3o . . | 3 | 3 | 192 | 1 1 -------------+----+----+-----+------ x3o4o . ♦ 6 | 12 | 8 | 24 * x3o . o4*b ♦ 6 | 12 | 8 | * 24
or . . . . | 24 ♦ 8 | 24 | 12 ----------------+----+----+-----+--- x . . . | 2 | 96 | 6 | 6 ----------------+----+----+-----+--- x3o . . | 3 | 3 | 192 | 2 ----------------+----+----+-----+--- x3o4o . & ♦ 6 | 12 | 8 | 48
x3o4/3o3/2o4/3*b (Type B) . . . . | 24 ♦ 8 | 24 | 6 6 -----------------+----+----+-----+------ x . . . | 2 | 96 | 6 | 3 3 -----------------+----+----+-----+------ x3o . . | 3 | 3 | 192 | 1 1 -----------------+----+----+-----+------ x3o4/3o . ♦ 6 | 12 | 8 | 24 * x3o . o4/3*b ♦ 6 | 12 | 8 | * 24
or . . . . | 24 ♦ 8 | 24 | 12 --------------------+----+----+-----+--- x . . . | 2 | 96 | 6 | 6 --------------------+----+----+-----+--- x3o . . | 3 | 3 | 192 | 2 --------------------+----+----+-----+--- x3o4/3o . & ♦ 6 | 12 | 8 | 48
x3/2o4o3o4/3*b (Type B) . . . . | 24 ♦ 8 | 24 | 6 6 ---------------+----+----+-----+------ x . . . | 2 | 96 | 6 | 3 3 ---------------+----+----+-----+------ x3/2o . . | 3 | 3 | 192 | 1 1 ---------------+----+----+-----+------ x3/2o4o . ♦ 6 | 12 | 8 | 24 * x3/2o . o4/3*b ♦ 6 | 12 | 8 | * 24
x3/2o4o3/2o4*b (Type B) . . . . | 24 ♦ 8 | 24 | 6 6 ---------------+----+----+-----+------ x . . . | 2 | 96 | 6 | 3 3 ---------------+----+----+-----+------ x3/2o . . | 3 | 3 | 192 | 1 1 ---------------+----+----+-----+------ x3/2o4o . ♦ 6 | 12 | 8 | 24 * x3/2o . o4*b ♦ 6 | 12 | 8 | * 24
or . . . . | 24 ♦ 8 | 24 | 12 ------------------+----+----+-----+--- x . . . | 2 | 96 | 6 | 6 ------------------+----+----+-----+--- x3/2o . . | 3 | 3 | 192 | 2 ------------------+----+----+-----+--- x3/2o4o . & ♦ 6 | 12 | 8 | 48
x3/2o4/3o3/2o4/3*b (Type B) . . . . | 24 ♦ 8 | 24 | 6 6 -------------------+----+----+-----+------ x . . . | 2 | 96 | 6 | 3 3 -------------------+----+----+-----+------ x3/2o . . | 3 | 3 | 192 | 1 1 -------------------+----+----+-----+------ x3/2o4/3o . ♦ 6 | 12 | 8 | 24 * x3/2o . o4/3*b ♦ 6 | 12 | 8 | * 24
or . . . . | 24 ♦ 8 | 24 | 12 ----------------------+----+----+-----+--- x . . . | 2 | 96 | 6 | 6 ----------------------+----+----+-----+--- x3/2o . . | 3 | 3 | 192 | 2 ----------------------+----+----+-----+--- x3/2o4/3o . & ♦ 6 | 12 | 8 | 48
© 2004-2024 | top of page |