Site Map | Polytopes | Dynkin Diagrams | Vertex Figures, etc. | Incidence Matrices | Index |
---- 4D ----
This page is available sorted by point-group symmetry (below)
or by complexity (only including starry cases for quasiregular linear diagrams)
or by similarity.
Indepted to the mere quantity of cases the following overview table links to additional pages too; only parts are listed in details below.
Linear Dynkin Graphs | Tridental Dynkin Graphs | Loop-n-Tail Dynkin Graphs | Loop Dynkin Graphs | Two-Loop Dynkin Graphs | Simplical Dynkin Graphs | Others |
o-P-o-Q-o-R-o |
o-P-o-Q-o *b-R-o = o_ -P_ >o---R---o _Q- o- |
o-P-o-Q-o-R-o-S-*b = o_ | -Q_ R >o---P---o | _S- o- |
o-P-o-Q-o-R-o-S-*a = o---P---o | | S Q | | o---R---o |
o-P-o-Q-o-R-o-S-*a-T-*c = _o_ _P- | -S_ o< T >o -Q_ | _R- -o- |
o-P-o-Q-o-R-o-S-*a-T-*c *b-U-*d = o / T \ P _o_ S /_Q R_\ o-----U-----o |
In the following symmetry listings "etc." means replacments according to 3 ↔ 3/2, to 4 ↔ 4/3, to 5 ↔ 5/4, or to 5/2 ↔ 5/3.
Polychora with Grünbaumian elements so far are not investigated any further. Those are Grünbaumian a priori, usually because of some subgraph -x-n/d-x-, where d is even. Others, which come out as being Grünbaumian a posteriori will be given none the less.
*) not even a scaliform representation
does exist, just occures as pure
faceting
**) not uniform, but at least scaliform
two-loop ones |
o-P-o-Q-o-R-o-S-*a-T-*c = _o_ _P- | -S_ o< T >o -Q_ | _R- -o- |
o3o3o3o3*a3/2*c (µ=2) | o3o3/2o3/2o3*a3*c (µ=6) | o3o3/2o3o3/2*a3*c (µ=10) | |
quasiregulars |
x3o3o3o3*a3/2*c - (contains "2tet") o3x3o3o3*a3/2*c - (contains "2tet") |
x3o3/2o3/2o3*a3*c - (contains "2tet") o3x3/2o3/2o3*a3*c - (contains "2tet") o3o3/2x3/2o3*a3*c - (contains "2tet") |
x3o3/2o3o3/2*a3*c - (contains "2tet") o3x3/2o3o3/2*a3*c - (contains "2tet") |
other Wythoffians |
x3x3o3o3*a3/2*c - (contains "2tet") x3o3x3o3*a3/2*c - [Grünbaumian] o3x3o3x3*a3/2*c - x3x3x3o3*a3/2*c - [Grünbaumian] x3x3o3x3*a3/2*c - rawvhitto x3x3x3x3*a3/2*c - [Grünbaumian] |
x3x3/2o3/2o3*a3*c - (contains "2tet") x3o3/2x3/2o3*a3*c - "2oh" o3x3/2x3/2o3*a3*c - [Grünbaumian] o3x3/2o3/2x3*a3*c - x3x3/2x3/2o3*a3*c - [Grünbaumian] x3x3/2o3/2x3*a3*c - rawvhitto o3x3/2x3/2x3*a3*c - [Grünbaumian] x3x3/2x3/2x3*a3*c - [Grünbaumian] |
x3x3/2o3o3/2*a3*c - (contains "2tet") x3o3/2x3o3/2*a3*c - "2oh" o3x3/2x3o3/2*a3*c - [Grünbaumian] o3x3/2o3x3/2*a3*c - x3x3/2x3o3/2*a3*c - [Grünbaumian] x3x3/2o3x3/2*a3*c - x3x3/2x3x3/2*a3*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3o3/2o3/2*a3/2*c (µ=14) | o3/2o3/2o3/2o3/2*a3/2*c (µ=34) | ||
quasiregulars |
x3o3o3/2o3/2*a3/2*c - (contains "2tet") o3x3o3/2o3/2*a3/2*c - (contains "2tet") o3o3o3/2x3/2*a3/2*c - (contains "2tet") |
x3/2o3/2o3/2o3/2*a3/2*c - (contains "2tet") o3/2x3/2o3/2o3/2*a3/2*c - (contains "2tet") | |
other Wythoffians |
x3x3o3/2o3/2*a3/2*c - (contains "2tet") x3o3x3/2o3/2*a3/2*c - [Grünbaumian] x3o3o3/2x3/2*a3/2*c - [Grünbaumian] o3x3o3/2x3/2*a3/2*c - x3x3x3/2o3/2*a3/2*c - [Grünbaumian] x3x3o3/2x3/2*a3/2*c - [Grünbaumian] x3o3x3/2x3/2*a3/2*c - [Grünbaumian] x3x3x3/2x3/2*a3/2*c - [Grünbaumian] |
x3/2x3/2o3/2o3/2*a3/2*c - [Grünbaumian] x3/2o3/2x3/2o3/2*a3/2*c - [Grünbaumian] o3/2x3/2o3/2x3/2*a3/2*c - x3/2x3/2x3/2o3/2*a3/2*c - [Grünbaumian] x3/2x3/2o3/2x3/2*a3/2*c - [Grünbaumian] x3/2x3/2x3/2x3/2*a3/2*c - [Grünbaumian] | |
(partial) snubs and holosnubs |
... |
... |
o3o4o3o4*a4/3*c (µ=5) | o3o4/3o3/2o4*a4*c (µ=19) | o3/2o4o3/2o4*a4*c (µ=29) | |
quasiregulars |
x3o4o3o4*a4/3*c - (contains "oct+6{4}","2cube") o3x4o3o4*a4/3*c - (contains "oct+6{4}") |
x3o4/3o3/2o4*a4*c - (contains "oct+6{4}","2cube") o3x4/3o3/2o4*a4*c - (contains "oct+6{4}") o3o4/3x3/2o4*a4*c - (contains "oct+6{4}","2cube") o3o4/3o3/2x4*a4*c - (contains "oct+6{4}") |
x3/2o4o3/2o4*a4*c - (contains "oct+6{4}","2cube") o3/2x4o3/2o4*a4*c - (contains "oct+6{4}") |
other Wythoffians |
x3x4o3o4*a4/3*c - (contains "2cube",2cho) x3o4x3o4*a4/3*c - afdec x3o4o3x4*a4/3*c - (contains "oct+6{4}") o3x4o3x4*a4/3*c - x3x4x3o4*a4/3*c - ditdi x3x4o3x4*a4/3*c - x3x4x3x4*a4/3*c - croc |
x3x4/3o3/2o4*a4*c - (contains "2cube",2cho) x3o4/3x3/2o4*a4*c - girfaddic x3o4/3o3/2x4*a4*c - (contains "oct+6{4}") o3x4/3x3/2o4*a4*c - (contains "oct+6{4}") o3x4/3o3/2x4*a4*c - o3o4/3x3/2x4*a4*c - [Grünbaumian] x3x4/3x3/2o4*a4*c - diquitdi x3x4/3o3/2x4*a4*c - x3o4/3x3/2x4*a4*c - [Grünbaumian] o3x4/3x3/2x4*a4*c - [Grünbaumian] x3x4/3x3/2x4*a4*c - [Grünbaumian] |
x3/2x4o3/2o4*a4*c - [Grünbaumian] x3/2o4x3/2o4*a4*c - girfaddic x3/2o4o3/2x4*a4*c - (contains "oct+6{4}") o3/2x4o3/2x4*a4*c - x3/2x4x3/2o4*a4*c - [Grünbaumian] x3/2x4o3/2x4*a4*c - [Grünbaumian] x3/2x4x3/2x4*a4*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o4/3o3o4/3*a4*c (µ=77) | o3o4o3/2o4/3*a4/3*c (µ=91) | o3/2o4/3o3/2o4/3*a4/3*c (µ=245) | |
quasiregulars |
x3o4/3o3o4/3*a4*c - (contains "oct+6{4}","2cube") o3x4/3o3o4/3*a4*c - (contains "oct+6{4}") |
x3o4o3/2o4/3*a4/3*c - (contains "oct+6{4}","2cube") o3x4o3/2o4/3*a4/3*c - (contains "oct+6{4}") o3o4x3/2o4/3*a4/3*c - (contains "oct+6{4}","2cube") o3o4o3/2x4/3*a4/3*c - (contains "oct+6{4}") |
x3/2o4/3o3/2o4/3*a4/3*c - (contains "oct+6{4}","2cube") o3/2x4/3o3/2o4/3*a4/3*c - (contains "oct+6{4}") |
other Wythoffians |
x3x4/3o3o4/3*a4*c - (contains "2cube",2cho) x3o4/3x3o4/3*a4*c - girfaddic x3o4/3o3x4/3*a4*c - (contains "oct+6{4}") o3x4/3o3x4/3*a4*c - x3x4/3x3o4/3*a4*c - diquitdi x3x4/3o3x4/3*a4*c - x3x4/3x3x4/3*a4*c - coqroc |
x3x4o3/2o4/3*a4/3*c - (contains "2cube",2cho) x3o4x3/2o4/3*a4/3*c - afdec x3o4o3/2x4/3*a4/3*c - (contains "oct+6{4}") o3x4x3/2o4/3*a4/3*c - (contains "oct+6{4}") o3x4o3/2x4/3*a4/3*c - o3o4x3/2x4/3*a4/3*c - [Grünbaumian] x3x4x3/2o4/3*a4/3*c - ditdi x3x4o3/2x4/3*a4/3*c - x3o4x3/2x4/3*a4/3*c - [Grünbaumian] o3x4x3/2x4/3*a4/3*c - [Grünbaumian] x3x4x3/2x4/3*a4/3*c - [Grünbaumian] |
x3/2x4/3o3/2o4/3*a4/3*c - [Grünbaumian] x3/2o4/3x3/2o4/3*a4/3*c - afdec x3/2o4/3o3/2x4/3*a4/3*c - (contains "oct+6{4}") o3/2x4/3o3/2x4/3*a4/3*c - x3/2x4/3x3/2o4/3*a4/3*c - [Grünbaumian] x3/2x4/3o3/2x4/3*a4/3*c - [Grünbaumian] x3/2x4/3x3/2x4/3*a4/3*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3o3o5*a3/2*c (µ=7) | o3o3/2o3/2o5*a3*c (µ=113) | o3/2o3o3o5/4*a3*c (µ=593) | o3/2o3o3/2o5*a3*c (µ=607) | |
quasiregulars |
x3o3o3o5*a3/2*c - (contains "2tet") o3x3o3o5*a3/2*c - (contains "2tet") o3o3x3o5*a3/2*c - (contains "2tet") o3o3o3x5*a3/2*c - sidtaxady |
x3o3/2o3/2o5*a3*c - (contains "2tet") o3x3/2o3/2o5*a3*c - (contains "2tet") o3o3/2x3/2o5*a3*c - (contains "2tet") o3o3/2o3/2x5*a3*c - sidtaxady |
x3/2o3o3o5/4*a3*c - (contains "2tet") o3/2x3o3o5/4*a3*c - (contains "2tet") o3/2o3x3o5/4*a3*c - (contains "2tet") o3/2o3o3x5/4*a3*c - sidtaxady |
x3/2o3o3/2o5*a3*c - (contains "2tet") o3/2x3o3/2o5*a3*c - (contains "2tet") o3/2o3x3/2o5*a3*c - (contains "2tet") o3/2o3o3/2x5*a3*c - sidtaxady |
other Wythoffians |
x3x3o3o5*a3/2*c - stut dixady x3o3x3o5*a3/2*c - [Grünbaumian] x3o3o3x5*a3/2*c - (contains "2tet") o3x3x3o5*a3/2*c - (contains "2gike") o3x3o3x5*a3/2*c - o3o3x3x5*a3/2*c - (contains "2tet") x3x3x3o5*a3/2*c - [Grünbaumian] x3x3o3x5*a3/2*c - x3o3x3x5*a3/2*c - [Grünbaumian] o3x3x3x5*a3/2*c - sik vadixady x3x3x3x5*a3/2*c - [Grünbaumian] |
x3x3/2o3/2o5*a3*c - stut dixady x3o3/2x3/2o5*a3*c - gefdit dixdy x3o3/2o3/2x5*a3*c - (contains "2tet") o3x3/2x3/2o5*a3*c - [Grünbaumian] o3x3/2o3/2x5*a3*c - o3o3/2x3/2x5*a3*c - [Grünbaumian] x3x3/2x3/2o5*a3*c - [Grünbaumian] x3x3/2o3/2x5*a3*c - x3o3/2x3/2x5*a3*c - [Grünbaumian] o3x3/2x3/2x5*a3*c - [Grünbaumian] x3x3/2x3/2x5*a3*c - [Grünbaumian] |
x3/2x3o3o5/4*a3*c - [Grünbaumian] x3/2o3x3o5/4*a3*c - gefdit dixdy x3/2o3o3x5/4*a3*c - [Grünbaumian] o3/2x3x3o5/4*a3*c - (contains "2gike") o3/2x3o3x5/4*a3*c - o3/2o3x3x5/4*a3*c - (contains "2tet") x3/2x3x3o5/4*a3*c - [Grünbaumian] x3/2x3o3x5/4*a3*c - [Grünbaumian] x3/2o3x3x5/4*a3*c - [Grünbaumian] o3/2x3x3x5/4*a3*c - sik vadixady x3/2x3x3x5/4*a3*c - [Grünbaumian] |
x3/2x3o3/2o5*a3*c - [Grünbaumian] x3/2o3x3/2o5*a3*c - gefdit dixdy x3/2o3o3/2x5*a3*c - (contains "2tet") o3/2x3x3/2o5*a3*c - (contains "2gike") o3/2x3o3/2x5*a3*c - o3/2o3x3/2x5*a3*c - [Grünbaumian] x3/2x3x3/2o5*a3*c - [Grünbaumian] x3/2x3o3/2x5*a3*c - [Grünbaumian] x3/2o3x3/2x5*a3*c - [Grünbaumian] o3/2x3x3/2x5*a3*c - [Grünbaumian] x3/2x3x3/2x5*a3*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o3/2o3o5*a3/2*c (µ=713) | o3o3/2o3o5/4*a3*c (µ=1087) | o3o3o3/2o5/4*a3/2*c (µ=1193) | o3/2o3/2o3/2o5/4*a3/2*c (µ=2887) | |
quasiregulars |
x3/2o3/2o3o5*a3/2*c - (contains "2tet") o3/2x3/2o3o5*a3/2*c - (contains "2tet") o3/2o3/2x3o5*a3/2*c - (contains "2tet") o3/2o3/2o3x5*a3/2*c - sidtaxady |
x3o3/2o3o5/4*a3*c - (contains "2tet") o3x3/2o3o5/4*a3*c - (contains "2tet") o3o3/2x3o5/4*a3*c - (contains "2tet") o3o3/2o3x5/4*a3*c - sidtaxady |
x3o3o3/2o5/4*a3/2*c - (contains "2tet") o3x3o3/2o5/4*a3/2*c - (contains "2tet") o3o3x3/2o5/4*a3/2*c - (contains "2tet") o3o3o3/2x5/4*a3/2*c - sidtaxady |
x3/2o3/2o3/2o5/4*a3/2*c - (contains "2tet") o3/2x3/2o3/2o5/4*a3/2*c - (contains "2tet") o3/2o3/2x3/2o5/4*a3/2*c - (contains "2tet") o3/2o3/2o3/2x5/4*a3/2*c - sidtaxady |
other Wythoffians |
x3/2x3/2o3o5*a3/2*c - [Grünbaumian] x3/2o3/2x3o5*a3/2*c - [Grünbaumian] x3/2o3/2o3x5*a3/2*c - (contains "2tet") o3/2x3/2x3o5*a3/2*c - [Grünbaumian] o3/2x3/2o3x5*a3/2*c - o3/2o3/2x3x5*a3/2*c - (contains "2tet") x3/2x3/2x3o5*a3/2*c - [Grünbaumian] x3/2x3/2o3x5*a3/2*c - [Grünbaumian] x3/2o3/2x3x5*a3/2*c - [Grünbaumian] o3/2x3/2x3x5*a3/2*c - [Grünbaumian] x3/2x3/2x3x5*a3/2*c - [Grünbaumian] |
x3x3/2o3o5/4*a3*c - stut dixady x3o3/2x3o5/4*a3*c - gefdit dixdy x3o3/2o3x5/4*a3*c - [Grünbaumian] o3x3/2x3o5/4*a3*c - [Grünbaumian] o3x3/2o3x5/4*a3*c - o3o3/2x3x5/4*a3*c - (contains "2tet") x3x3/2x3o5/4*a3*c - [Grünbaumian] x3x3/2o3x5/4*a3*c - [Grünbaumian] x3o3/2x3x5/4*a3*c - [Grünbaumian] o3x3/2x3x5/4*a3*c - [Grünbaumian] x3x3/2x3x5/4*a3*c - [Grünbaumian] |
x3x3o3/2o5/4*a3/2*c - stut dixady x3o3x3/2o5/4*a3/2*c - [Grünbaumian] x3o3o3/2x5/4*a3/2*c - [Grünbaumian] o3x3x3/2o5/4*a3/2*c - (contains "2gike") o3x3o3/2x5/4*a3/2*c - o3o3x3/2x5/4*a3/2*c - [Grünbaumian] x3x3x3/2o5/4*a3/2*c - [Grünbaumian] x3x3o3/2x5/4*a3/2*c - [Grünbaumian] x3o3x3/2x5/4*a3/2*c - [Grünbaumian] o3x3x3/2x5/4*a3/2*c - [Grünbaumian] x3x3x3/2x5/4*a3/2*c - [Grünbaumian] |
x3/2x3/2o3/2o5/4*a3/2*c - [Grünbaumian] x3/2o3/2x3/2o5/4*a3/2*c - [Grünbaumian] x3/2o3/2o3/2x5/4*a3/2*c - [Grünbaumian] o3/2x3/2x3/2o5/4*a3/2*c - [Grünbaumian] o3/2x3/2o3/2x5/4*a3/2*c - o3/2o3/2x3/2x5/4*a3/2*c - [Grünbaumian] x3/2x3/2x3/2o5/4*a3/2*c - [Grünbaumian] x3/2x3/2o3/2x5/4*a3/2*c - [Grünbaumian] x3/2o3/2x3/2x5/4*a3/2*c - [Grünbaumian] o3/2x3/2x3/2x5/4*a3/2*c - [Grünbaumian] x3/2x3/2x3/2x5/4*a3/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o3o3o5/2*a3*c (µ=103) | o3o3/2o3o5/2*a3*c (µ=137) | o3o3o3o5/3*a3/2*c (µ=497) | o3o3o3/2o5/2*a3/2*c (µ=703) | |
quasiregulars |
x3/2o3o3o5/2*a3*c - (contains "2tet") o3/2x3o3o5/2*a3*c - (contains "2tet") o3/2o3x3o5/2*a3*c - (contains "2tet") o3/2o3o3x5/2*a3*c - gardtaxady |
x3o3/2o3o5/2*a3*c - (contains "2tet") o3x3/2o3o5/2*a3*c - (contains "2tet") o3o3/2x3o5/2*a3*c - (contains "2tet") o3o3/2o3x5/2*a3*c - gardtaxady |
x3o3o3o5/3*a3/2*c - (contains "2tet") o3x3o3o5/3*a3/2*c - (contains "2tet") o3o3x3o5/3*a3/2*c - (contains "2tet") o3o3o3x5/3*a3/2*c - gardtaxady |
x3o3o3/2o5/2*a3/2*c - (contains "2tet") o3x3o3/2o5/2*a3/2*c - (contains "2tet") o3o3x3/2o5/2*a3/2*c - (contains "2tet") o3o3o3/2x5/2*a3/2*c - gardtaxady |
other Wythoffians |
x3/2x3o3o5/2*a3*c - [Grünbaumian] x3/2o3x3o5/2*a3*c - sefdit dixdy x3/2o3o3x5/2*a3*c - [Grünbaumian] o3/2x3x3o5/2*a3*c - (contains "2ike") o3/2x3o3x5/2*a3*c - o3/2o3x3x5/2*a3*c - (contains "2tet") x3/2x3x3o5/2*a3*c - [Grünbaumian] x3/2x3o3x5/2*a3*c - [Grünbaumian] x3/2o3x3x5/2*a3*c - [Grünbaumian] o3/2x3x3x5/2*a3*c - gik vadixady x3/2x3x3x5/2*a3*c - [Grünbaumian] |
x3x3/2o3o5/2*a3*c - getit dixady x3o3/2x3o5/2*a3*c - sefdit dixdy x3o3/2o3x5/2*a3*c - [Grünbaumian] o3x3/2x3o5/2*a3*c - [Grünbaumian] o3x3/2o3x5/2*a3*c - o3o3/2x3x5/2*a3*c - (contains "2tet") x3x3/2x3o5/2*a3*c - [Grünbaumian] x3x3/2o3x5/2*a3*c - [Grünbaumian] x3o3/2x3x5/2*a3*c - [Grünbaumian] o3x3/2x3x5/2*a3*c - [Grünbaumian] x3x3/2x3x5/2*a3*c - [Grünbaumian] |
x3x3o3o5/3*a3/2*c - getit dixady x3o3x3o5/3*a3/2*c - [Grünbaumian] x3o3o3x5/3*a3/2*c - (contains "2tet") o3x3x3o5/3*a3/2*c - (contains "2ike") o3x3o3x5/3*a3/2*c - o3o3x3x5/3*a3/2*c - (contains "2tet") x3x3x3o5/3*a3/2*c - [Grünbaumian] x3x3o3x5/3*a3/2*c - x3o3x3x5/3*a3/2*c - [Grünbaumian] o3x3x3x5/3*a3/2*c - gik vadixady x3x3x3x5/3*a3/2*c - [Grünbaumian] |
x3x3o3/2o5/2*a3/2*c - getit dixady x3o3x3/2o5/2*a3/2*c - [Grünbaumian] x3o3o3/2x5/2*a3/2*c - [Grünbaumian] o3x3x3/2o5/2*a3/2*c - (contains "2ike") o3x3o3/2x5/2*a3/2*c - o3o3x3/2x5/2*a3/2*c - [Grünbaumian] x3x3x3/2o5/2*a3/2*c - [Grünbaumian] x3x3o3/2x5/2*a3/2*c - [Grünbaumian] x3o3x3/2x5/2*a3/2*c - [Grünbaumian] o3x3x3/2x5/2*a3/2*c - [Grünbaumian] x3x3x3/2x5/2*a3/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3o3/2o3/2o5/3*a3*c (µ=1063) | o3/2o3o3/2o5/3*a3*c (µ=1097) | o3/2o3/2o3o5/3*a3/2*c (µ=1663) | o3/2o3/2o3/2o5/2*a3/2*c (µ=1937) | |
quasiregulars |
x3o3/2o3/2o5/3*a3*c - (contains "2tet") o3x3/2o3/2o5/3*a3*c - (contains "2tet") o3o3/2x3/2o5/3*a3*c - (contains "2tet") o3o3/2o3/2x5/3*a3*c - gardtaxady |
x3/2o3o3/2o5/3*a3*c - (contains "2tet") o3/2x3o3/2o5/3*a3*c - (contains "2tet") o3/2o3x3/2o5/3*a3*c - (contains "2tet") o3/2o3o3/2x5/3*a3*c - gardtaxady |
x3/2o3/2o3o5/3*a3/2*c - (contains "2tet") o3/2x3/2o3o5/3*a3/2*c - (contains "2tet") o3/2o3/2x3o5/3*a3/2*c - (contains "2tet") o3/2o3/2o3x5/3*a3/2*c - gardtaxady |
x3/2o3/2o3/2o5/2*a3/2*c - (contains "2tet") o3/2x3/2o3/2o5/2*a3/2*c - (contains "2tet") o3/2o3/2x3/2o5/2*a3/2*c - (contains "2tet") o3/2o3/2o3/2x5/2*a3/2*c - gardtaxady |
other Wythoffians |
x3x3/2o3/2o5/3*a3*c - getit dixady x3o3/2x3/2o5/3*a3*c - sefdit dixdy x3o3/2o3/2x5/3*a3*c - (contains "2tet") o3x3/2x3/2o5/3*a3*c - [Grünbaumian] o3x3/2o3/2x5/3*a3*c - o3o3/2x3/2x5/3*a3*c - [Grünbaumian] x3x3/2x3/2o5/3*a3*c - [Grünbaumian] x3x3/2o3/2x5/3*a3*c - x3o3/2x3/2x5/3*a3*c - [Grünbaumian] o3x3/2x3/2x5/3*a3*c - [Grünbaumian] x3x3/2x3/2x5/3*a3*c - [Grünbaumian] |
x3/2x3o3/2o5/3*a3*c - [Grünbaumian] x3/2o3x3/2o5/3*a3*c - sefdit dixdy x3/2o3o3/2x5/3*a3*c - (contains "2tet") o3/2x3x3/2o5/3*a3*c - (contains "2ike") o3/2x3o3/2x5/3*a3*c - o3/2o3x3/2x5/3*a3*c - [Grünbaumian] x3/2x3x3/2o5/3*a3*c - [Grünbaumian] x3/2x3o3/2x5/3*a3*c - [Grünbaumian] x3/2o3x3/2x5/3*a3*c - [Grünbaumian] o3/2x3x3/2x5/3*a3*c - [Grünbaumian] x3/2x3x3/2x5/3*a3*c - [Grünbaumian] |
x3/2x3/2o3o5/3*a3/2*c - [Grünbaumian] x3/2o3/2x3o5/3*a3/2*c - [Grünbaumian] x3/2o3/2o3x5/3*a3/2*c - (contains "2tet") o3/2x3/2x3o5/3*a3/2*c - [Grünbaumian] o3/2x3/2o3x5/3*a3/2*c - o3/2o3/2x3x5/3*a3/2*c - (contains "2tet") x3/2x3/2x3o5/3*a3/2*c - [Grünbaumian] x3/2x3/2o3x5/3*a3/2*c - [Grünbaumian] x3/2o3/2x3x5/3*a3/2*c - [Grünbaumian] o3/2x3/2x3x5/3*a3/2*c - [Grünbaumian] x3/2x3/2x3x5/3*a3/2*c - [Grünbaumian] |
x3/2x3/2o3/2o5/2*a3/2*c - [Grünbaumian] x3/2o3/2x3/2o5/2*a3/2*c - [Grünbaumian] x3/2o3/2o3/2x5/2*a3/2*c - [Grünbaumian] o3/2x3/2x3/2o5/2*a3/2*c - [Grünbaumian] o3/2x3/2o3/2x5/2*a3/2*c - o3/2o3/2x3/2x5/2*a3/2*c - [Grünbaumian] x3/2x3/2x3/2o5/2*a3/2*c - [Grünbaumian] x3/2x3/2o3/2x5/2*a3/2*c - [Grünbaumian] x3/2o3/2x3/2x5/2*a3/2*c - [Grünbaumian] o3/2x3/2x3/2x5/2*a3/2*c - [Grünbaumian] x3/2x3/2x3/2x5/2*a3/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3o3o5/2o5*a3/2*c (µ=48) | o3o3/2o5/3o5*a3*c (µ=72) | o3/2o3o5/3o5*a3*c (µ=408) | o3/2o3o5/2o5/4*a3*c (µ=792) | |
quasiregulars |
x3o3o5/2o5*a3/2*c - (contains "2tet") o3x3o5/2o5*a3/2*c - (contains "2tet") o3o3x5/2o5*a3/2*c - (contains "2tet") o3o3o5/2x5*a3/2*c - dattathi |
x3o3/2o5/3o5*a3*c - (contains "2tet") o3x3/2o5/3o5*a3*c - (contains "2tet") o3o3/2x5/3o5*a3*c - (contains "2tet") o3o3/2o5/3x5*a3*c - dattathi |
x3/2o3o5/3o5*a3*c - (contains "2tet") o3/2x3o5/3o5*a3*c - (contains "2tet") o3/2o3x5/3o5*a3*c - (contains "2tet") o3/2o3o5/3x5*a3*c - dattathi |
x3/2o3o5/2o5/4*a3*c - (contains "2tet") o3/2x3o5/2o5/4*a3*c - (contains "2tet") o3/2o3x5/2o5/4*a3*c - (contains "2tet") o3/2o3o5/2x5/4*a3*c - dattathi |
other Wythoffians |
x3x3o5/2o5*a3/2*c - (contains cid) x3o3x5/2o5*a3/2*c - [Grünbaumian] x3o3o5/2x5*a3/2*c - (contains "2tet") o3x3x5/2o5*a3/2*c - (contains gacid) o3x3o5/2x5*a3/2*c - o3o3x5/2x5*a3/2*c - [Grünbaumian] x3x3x5/2o5*a3/2*c - [Grünbaumian] x3x3o5/2x5*a3/2*c - x3o3x5/2x5*a3/2*c - [Grünbaumian] o3x3x5/2x5*a3/2*c - [Grünbaumian] x3x3x5/2x5*a3/2*c - [Grünbaumian] |
x3x3/2o5/3o5*a3*c - (contains cid) x3o3/2x5/3o5*a3*c - efdit xithi x3o3/2o5/3x5*a3*c - (contains "2tet") o3x3/2x5/3o5*a3*c - [Grünbaumian] o3x3/2o5/3x5*a3*c - o3o3/2x5/3x5*a3*c - (contains "2tet") x3x3/2x5/3o5*a3*c - [Grünbaumian] x3x3/2o5/3x5*a3*c - x3o3/2x5/3x5*a3*c - xhidy o3x3/2x5/3x5*a3*c - [Grünbaumian] x3x3/2x5/3x5*a3*c - [Grünbaumian] |
x3/2x3o5/3o5*a3*c - [Grünbaumian] x3/2o3x5/3o5*a3*c - efdit xithi x3/2o3o5/3x5*a3*c - (contains "2tet") o3/2x3x5/3o5*a3*c - (contains gacid) o3/2x3o5/3x5*a3*c - o3/2o3x5/3x5*a3*c - (contains "2tet") x3/2x3x5/3o5*a3*c - [Grünbaumian] x3/2x3o5/3x5*a3*c - [Grünbaumian] x3/2o3x5/3x5*a3*c - xhidy o3/2x3x5/3x5*a3*c - x3/2x3x5/3x5*a3*c - [Grünbaumian] |
x3/2x3o5/2o5/4*a3*c - [Grünbaumian] x3/2o3x5/2o5/4*a3*c - efdit xithi x3/2o3o5/2x5/4*a3*c - [Grünbaumian] o3/2x3x5/2o5/4*a3*c - (contains gacid) o3/2x3o5/2x5/4*a3*c - o3/2o3x5/2x5/4*a3*c - [Grünbaumian] x3/2x3x5/2o5/4*a3*c - [Grünbaumian] x3/2x3o5/2x5/4*a3*c - [Grünbaumian] x3/2o3x5/2x5/4*a3*c - [Grünbaumian] o3/2x3x5/2x5/4*a3*c - [Grünbaumian] x3/2x3x5/2x5/4*a3*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o3/2o5/2o5*a3/2*c (µ=912) | o3o3/2o5/2o5/4*a3*c (µ=1128) | o3o3o5/3o5/4*a3/2*c (µ=1152) | o3/2o3/2o5/3o5/4*a3/2*c (µ=2688) | |
quasiregulars |
x3/2o3/2o5/2o5*a3/2*c - (contains "2tet") o3/2x3/2o5/2o5*a3/2*c - (contains "2tet") o3/2o3/2x5/2o5*a3/2*c - (contains "2tet") o3/2o3/2o5/2x5*a3/2*c - dattathi |
x3o3/2o5/2o5/4*a3*c - (contains "2tet") o3x3/2o5/2o5/4*a3*c - (contains "2tet") o3o3/2x5/2o5/4*a3*c - (contains "2tet") o3o3/2o5/2x5/4*a3*c - dattathi |
x3o3o5/3o5/4*a3/2*c - (contains "2tet") o3x3o5/3o5/4*a3/2*c - (contains "2tet") o3o3x5/3o5/4*a3/2*c - (contains "2tet") o3o3o5/3x5/4*a3/2*c - dattathi |
x3/2o3/2o5/3o5/4*a3/2*c - (contains "2tet") o3/2x3/2o5/3o5/4*a3/2*c - (contains "2tet") o3/2o3/2x5/3o5/4*a3/2*c - (contains "2tet") o3/2o3/2o5/3x5/4*a3/2*c - dattathi |
other Wythoffians |
x3/2x3/2o5/2o5*a3/2*c - [Grünbaumian] x3/2o3/2x5/2o5*a3/2*c - [Grünbaumian] x3/2o3/2o5/2x5*a3/2*c - (contains "2tet") o3/2x3/2x5/2o5*a3/2*c - [Grünbaumian] o3/2x3/2o5/2x5*a3/2*c - o3/2o3/2x5/2x5*a3/2*c - [Grünbaumian] x3/2x3/2x5/2o5*a3/2*c - [Grünbaumian] x3/2x3/2o5/2x5*a3/2*c - [Grünbaumian] x3/2o3/2x5/2x5*a3/2*c - [Grünbaumian] o3/2x3/2x5/2x5*a3/2*c - [Grünbaumian] x3/2x3/2x5/2x5*a3/2*c - [Grünbaumian] |
x3x3/2o5/2o5/4*a3*c - (contains cid) x3o3/2x5/2o5/4*a3*c - efdit xithi x3o3/2o5/2x5/4*a3*c - [Grünbaumian] o3x3/2x5/2o5/4*a3*c - [Grünbaumian] o3x3/2o5/2x5/4*a3*c - o3o3/2x5/2x5/4*a3*c - [Grünbaumian] x3x3/2x5/2o5/4*a3*c - [Grünbaumian] x3x3/2o5/2x5/4*a3*c - [Grünbaumian] x3o3/2x5/2x5/4*a3*c - [Grünbaumian] o3x3/2x5/2x5/4*a3*c - [Grünbaumian] x3x3/2x5/2x5/4*a3*c - [Grünbaumian] |
x3x3o5/3o5/4*a3/2*c - (contains cid) x3o3x5/3o5/4*a3/2*c - [Grünbaumian] x3o3o5/3x5/4*a3/2*c - [Grünbaumian] o3x3x5/3o5/4*a3/2*c - (contains gacid) o3x3o5/3x5/4*a3/2*c - o3o3x5/3x5/4*a3/2*c - (contains "2tet") x3x3x5/3o5/4*a3/2*c - [Grünbaumian] x3x3o5/3x5/4*a3/2*c - [Grünbaumian] x3o3x5/3x5/4*a3/2*c - [Grünbaumian] o3x3x5/3x5/4*a3/2*c - x3x3x5/3x5/4*a3/2*c - [Grünbaumian] |
x3/2x3/2o5/3o5/4*a3/2*c - [Grünbaumian] x3/2o3/2x5/3o5/4*a3/2*c - [Grünbaumian] x3/2o3/2o5/3x5/4*a3/2*c - [Grünbaumian] o3/2x3/2x5/3o5/4*a3/2*c - [Grünbaumian] o3/2x3/2o5/3x5/4*a3/2*c - o3/2o3/2x5/3x5/4*a3/2*c - (contains "2tet") x3/2x3/2x5/3o5/4*a3/2*c - [Grünbaumian] x3/2x3/2o5/3x5/4*a3/2*c - [Grünbaumian] x3/2o3/2x5/3x5/4*a3/2*c - [Grünbaumian] o3/2x3/2x5/3x5/4*a3/2*c - [Grünbaumian] x3/2x3/2x5/3x5/4*a3/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3o5/2o5o3/2*a3*c (µ=35) | o3o5/2o5/4o3*a3*c (µ=205) | o3/2o5/2o5o3*a3/2*c (µ=325) | o3o5/3o5o3*a3/2*c (µ=395) | |
quasiregulars |
x3o5/2o5o3/2*a3*c - (contains "2ike") o3x5/2o5o3/2*a3*c - sishi+gridixhi o3o5/2x5o3/2*a3*c - datcathi o3o5/2o5x3/2*a3*c - gaghi+sridixhi |
x3o5/2o5/4o3*a3*c - (contains "2ike") o3x5/2o5/4o3*a3*c - sishi+gridixhi o3o5/2x5/4o3*a3*c - datcathi o3o5/2o5/4x3*a3*c - gaghi+sridixhi |
x3/2o5/2o5o3*a3/2*c - (contains "2ike") o3/2x5/2o5o3*a3/2*c - sishi+gridixhi o3/2o5/2x5o3*a3/2*c - datcathi o3/2o5/2o5x3*a3/2*c - gaghi+sridixhi |
x3o5/3o5o3*a3/2*c - (contains "2ike") o3x5/3o5o3*a3/2*c - sishi+gridixhi o3o5/3x5o3*a3/2*c - datcathi o3o5/3o5x3*a3/2*c - gaghi+sridixhi |
other Wythoffians |
x3x5/2o5o3/2*a3*c - (contains "2gike") x3o5/2x5o3/2*a3*c - girfixthi x3o5/2o5x3/2*a3*c - [Grünbaumian] o3x5/2x5o3/2*a3*c - [Grünbaumian] o3x5/2o5x3/2*a3*c - o3o5/2x5x3/2*a3*c - (contains "2seihid") x3x5/2x5o3/2*a3*c - [Grünbaumian] x3x5/2o5x3/2*a3*c - [Grünbaumian] x3o5/2x5x3/2*a3*c - [Grünbaumian] o3x5/2x5x3/2*a3*c - [Grünbaumian] x3x5/2x5x3/2*a3*c - [Grünbaumian] |
x3x5/2o5/4o3*a3*c - (contains "2gike") x3o5/2x5/4o3*a3*c - girfixthi x3o5/2o5/4x3*a3*c - (contains "2ike") o3x5/2x5/4o3*a3*c - [Grünbaumian] o3x5/2o5/4x3*a3*c - o3o5/2x5/4x3*a3*c - [Grünbaumian] x3x5/2x5/4o3*a3*c - [Grünbaumian] x3x5/2o5/4x3*a3*c - x3o5/2x5/4x3*a3*c - [Grünbaumian] o3x5/2x5/4x3*a3*c - [Grünbaumian] x3x5/2x5/4x3*a3*c - [Grünbaumian] |
x3/2x5/2o5o3*a3/2*c - [Grünbaumian] x3/2o5/2x5o3*a3/2*c - [Grünbaumian] x3/2o5/2o5x3*a3/2*c - (contains "2ike") o3/2x5/2x5o3*a3/2*c - [Grünbaumian] o3/2x5/2o5x3*a3/2*c - o3/2o5/2x5x3*a3/2*c - (contains "2seihid") x3/2x5/2x5o3*a3/2*c - [Grünbaumian] x3/2x5/2o5x3*a3/2*c - [Grünbaumian] x3/2o5/2x5x3*a3/2*c - [Grünbaumian] o3/2x5/2x5x3*a3/2*c - [Grünbaumian] x3/2x5/2x5x3*a3/2*c - [Grünbaumian] |
x3x5/3o5o3*a3/2*c - (contains "2gike") x3o5/3x5o3*a3/2*c - [Grünbaumian] x3o5/3o5x3*a3/2*c - (contains "2ike") o3x5/3x5o3*a3/2*c - (contains "2geihid") o3x5/3o5x3*a3/2*c - o3o5/3x5x3*a3/2*c - (contains "2seihid") x3x5/3x5o3*a3/2*c - [Grünbaumian] x3x5/3o5x3*a3/2*c - x3o5/3x5x3*a3/2*c - [Grünbaumian] o3x5/3x5x3*a3/2*c - x3x5/3x5x3*a3/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o5/3o5o3/2*a3*c (µ=685) | o3/2o5/3o5/4o3*a3*c (µ=1475) | o3o5/3o5/4o3/2*a3/2*c (µ=1765) | o3/2o5/2o5/4o3/2*a3/2*c (µ=2315) | |
quasiregulars |
x3/2o5/3o5o3/2*a3*c - (contains "2ike") o3/2x5/3o5o3/2*a3*c - sishi+gridixhi o3/2o5/3x5o3/2*a3*c - datcathi o3/2o5/3o5x3/2*a3*c - gaghi+sridixhi |
x3/2o5/3o5/4o3*a3*c - (contains "2ike") o3/2x5/3o5/4o3*a3*c - sishi+gridixhi o3/2o5/3x5/4o3*a3*c - datcathi o3/2o5/3o5/4x3*a3*c - gaghi+sridixhi |
x3o5/3o5/4o3/2*a3/2*c - (contains "2ike") o3x5/3o5/4o3/2*a3/2*c - sishi+gridixhi o3o5/3x5/4o3/2*a3/2*c - datcathi o3o5/3o5/4x3/2*a3/2*c - gaghi+sridixhi |
x3/2o5/2o5/4o3/2*a3/2*c - (contains "2ike") o3/2x5/2o5/4o3/2*a3/2*c - sishi+gridixhi o3/2o5/2x5/4o3/2*a3/2*c - datcathi o3/2o5/2o5/4x3/2*a3/2*c - gaghi+sridixhi |
other Wythoffians |
x3/2x5/3o5o3/2*a3*c - [Grünbaumian] x3/2o5/3x5o3/2*a3*c - girfixthi x3/2o5/3o5x3/2*a3*c - [Grünbaumian] o3/2x5/3x5o3/2*a3*c - (contains "2geihid") o3/2x5/3o5x3/2*a3*c - o3/2o5/3x5x3/2*a3*c - (contains "2seihid") x3/2x5/3x5o3/2*a3*c - [Grünbaumian] x3/2x5/3o5x3/2*a3*c - [Grünbaumian] x3/2o5/3x5x3/2*a3*c - [Grünbaumian] o3/2x5/3x5x3/2*a3*c - x3/2x5/3x5x3/2*a3*c - [Grünbaumian] |
x3/2x5/3o5/4o3*a3*c - [Grünbaumian] x3/2o5/3x5/4o3*a3*c - girfixthi x3/2o5/3o5/4x3*a3*c - (contains "2ike") o3/2x5/3x5/4o3*a3*c - (contains "2geihid") o3/2x5/3o5/4x3*a3*c - o3/2o5/3x5/4x3*a3*c - [Grünbaumian] x3/2x5/3x5/4o3*a3*c - [Grünbaumian] x3/2x5/3o5/4x3*a3*c - [Grünbaumian] x3/2o5/3x5/4x3*a3*c - [Grünbaumian] o3/2x5/3x5/4x3*a3*c - [Grünbaumian] x3/2x5/3x5/4x3*a3*c - [Grünbaumian] |
x3x5/3o5/4o3/2*a3/2*c - (contains "2gike") x3o5/3x5/4o3/2*a3/2*c - [Grünbaumian] x3o5/3o5/4x3/2*a3/2*c - [Grünbaumian] o3x5/3x5/4o3/2*a3/2*c - (contains "2geihid") o3x5/3o5/4x3/2*a3/2*c - o3o5/3x5/4x3/2*a3/2*c - [Grünbaumian] x3x5/3x5/4o3/2*a3/2*c - [Grünbaumian] x3x5/3o5/4x3/2*a3/2*c - [Grünbaumian] x3o5/3x5/4x3/2*a3/2*c - [Grünbaumian] o3x5/3x5/4x3/2*a3/2*c - [Grünbaumian] x3x5/3x5/4x3/2*a3/2*c - [Grünbaumian] |
x3/2x5/2o5/4o3/2*a3/2*c - [Grünbaumian] x3/2o5/2x5/4o3/2*a3/2*c - [Grünbaumian] x3/2o5/2o5/4x3/2*a3/2*c - [Grünbaumian] o3/2x5/2x5/4o3/2*a3/2*c - [Grünbaumian] o3/2x5/2o5/4x3/2*a3/2*c - o3/2o5/2x5/4x3/2*a3/2*c - [Grünbaumian] x3/2x5/2x5/4o3/2*a3/2*c - [Grünbaumian] x3/2x5/2o5/4x3/2*a3/2*c - [Grünbaumian] x3/2o5/2x5/4x3/2*a3/2*c - [Grünbaumian] o3/2x5/2x5/4x3/2*a3/2*c - [Grünbaumian] x3/2x5/2x5/4x3/2*a3/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3o5o5/2o5/2*a3/2*c (µ=126) | o3/2o5o5/2o5/3*a3*c (µ=234) | o3/2o5o5/3o5/2*a3*c (µ=486) | o3o5o5/3o5/3*a3/2*c (µ=594) | |
quasiregulars |
x3o5o5/2o5/2*a3/2*c - (contains gacid) o3x5o5/2o5/2*a3/2*c - gaghi+didhi o3o5x5/2o5/2*a3/2*c - (contains gacid) o3o5o5/2x5/2*a3/2*c - (contains "2gissid") |
x3/2o5o5/2o5/3*a3*c - (contains gacid) o3/2x5o5/2o5/3*a3*c - gaghi+didhi o3/2o5x5/2o5/3*a3*c - (contains gacid) o3/2o5o5/2x5/3*a3*c - (contains "2gissid") |
x3/2o5o5/3o5/2*a3*c - (contains gacid) o3/2x5o5/3o5/2*a3*c - gaghi+didhi o3/2o5x5/3o5/2*a3*c - (contains gacid) o3/2o5o5/3x5/2*a3*c - (contains "2gissid") |
x3o5o5/3o5/3*a3/2*c - (contains gacid) o3x5o5/3o5/3*a3/2*c - gaghi+didhi o3o5x5/3o5/3*a3/2*c - (contains gacid) o3o5o5/3x5/3*a3/2*c - (contains "2gissid") |
other Wythoffians |
x3x5o5/2o5/2*a3/2*c - (contains gacid) x3o5x5/2o5/2*a3/2*c - [Grünbaumian] x3o5o5/2x5/2*a3/2*c - [Grünbaumian] o3x5x5/2o5/2*a3/2*c - (contains gacid) o3x5o5/2x5/2*a3/2*c - o3o5x5/2x5/2*a3/2*c - [Grünbaumian] x3x5x5/2o5/2*a3/2*c - [Grünbaumian] x3x5o5/2x5/2*a3/2*c - [Grünbaumian] x3o5x5/2x5/2*a3/2*c - [Grünbaumian] o3x5x5/2x5/2*a3/2*c - [Grünbaumian] x3x5x5/2x5/2*a3/2*c - [Grünbaumian] |
x3/2x5o5/2o5/3*a3*c - [Grünbaumian] x3/2o5x5/2o5/3*a3*c - (contains "2sidhei") x3/2o5o5/2x5/3*a3*c - (contains "2gike") o3/2x5x5/2o5/3*a3*c - (contains gacid) o3/2x5o5/2x5/3*a3*c - o3/2o5x5/2x5/3*a3*c - [Grünbaumian] x3/2x5x5/2o5/3*a3*c - [Grünbaumian] x3/2x5o5/2x5/3*a3*c - [Grünbaumian] x3/2o5x5/2x5/3*a3*c - [Grünbaumian] o3/2x5x5/2x5/3*a3*c - [Grünbaumian] x3/2x5x5/2x5/3*a3*c - [Grünbaumian] |
x3/2x5o5/3o5/2*a3*c - [Grünbaumian] x3/2o5x5/3o5/2*a3*c - (contains "2sidhei") x3/2o5o5/3x5/2*a3*c - [Grünbaumian] o3/2x5x5/3o5/2*a3*c - (contains gacid) o3/2x5o5/3x5/2*a3*c - o3/2o5x5/3x5/2*a3*c - gefidtethi x3/2x5x5/3o5/2*a3*c - [Grünbaumian] x3/2x5o5/3x5/2*a3*c - [Grünbaumian] x3/2o5x5/3x5/2*a3*c - [Grünbaumian] o3/2x5x5/3x5/2*a3*c - x3/2x5x5/3x5/2*a3*c - [Grünbaumian] |
x3x5o5/3o5/3*a3/2*c - (contains gacid) x3o5x5/3o5/3*a3/2*c - [Grünbaumian] x3o5o5/3x5/3*a3/2*c - (contains "2gike") o3x5x5/3o5/3*a3/2*c - (contains gacid) o3x5o5/3x5/3*a3/2*c - o3o5x5/3x5/3*a3/2*c - gefidtethi x3x5x5/3o5/3*a3/2*c - [Grünbaumian] x3x5o5/3x5/3*a3/2*c - x3o5x5/3x5/3*a3/2*c - [Grünbaumian] o3x5x5/3x5/3*a3/2*c - x3x5x5/3x5/3*a3/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3o5/4o5/3o5/2*a3*c (µ=714) | o3o5/4o5/2o5/3*a3*c (µ=966) | o3/2o5/4o5/2o5/2*a3/2*c (µ=1554) | o3/2o5/4o5/3o5/3*a3/2*c (µ=2526) | |
quasiregulars |
x3o5/4o5/3o5/2*a3*c - (contains gacid) o3x5/4o5/3o5/2*a3*c - gaghi+didhi o3o5/4x5/3o5/2*a3*c - (contains gacid) o3o5/4o5/3x5/2*a3*c - (contains "2gissid") |
x3o5/4o5/2o5/3*a3*c - (contains gacid) o3x5/4o5/2o5/3*a3*c - gaghi+didhi o3o5/4x5/2o5/3*a3*c - (contains gacid) o3o5/4o5/2x5/3*a3*c - (contains "2gissid") |
x3/2o5/4o5/2o5/2*a3/2*c - (contains gacid) o3/2x5/4o5/2o5/2*a3/2*c - gaghi+didhi o3/2o5/4x5/2o5/2*a3/2*c - (contains gacid) o3/2o5/4o5/2x5/2*a3/2*c - (contains "2gissid") |
x3/2o5/4o5/3o5/3*a3/2*c - (contains gacid) o3/2x5/4o5/3o5/3*a3/2*c - gaghi+didhi o3/2o5/4x5/3o5/3*a3/2*c - (contains gacid) o3/2o5/4o5/3x5/3*a3/2*c - (contains "2gissid") |
other Wythoffians |
x3x5/4o5/3o5/2*a3*c - (contains gacid) x3o5/4x5/3o5/2*a3*c - (contains "2sidhei") x3o5/4o5/3x5/2*a3*c - [Grünbaumian] o3x5/4x5/3o5/2*a3*c - [Grünbaumian] o3x5/4o5/3x5/2*a3*c - o3o5/4x5/3x5/2*a3*c - gefidtethi x3x5/4x5/3o5/2*a3*c - [Grünbaumian] x3x5/4o5/3x5/2*a3*c - [Grünbaumian] x3o5/4x5/3x5/2*a3*c - [Grünbaumian] o3x5/4x5/3x5/2*a3*c - [Grünbaumian] x3x5/4x5/3x5/2*a3*c - [Grünbaumian] |
x3x5/4o5/2o5/3*a3*c - (contains gacid) x3o5/4x5/2o5/3*a3*c - (contains "2sidhei") x3o5/4o5/2x5/3*a3*c - (contains "2gike") o3x5/4x5/2o5/3*a3*c - [Grünbaumian] o3x5/4o5/2x5/3*a3*c - o3o5/4x5/2x5/3*a3*c - [Grünbaumian] x3x5/4x5/2o5/3*a3*c - [Grünbaumian] x3x5/4o5/2x5/3*a3*c - x3o5/4x5/2x5/3*a3*c - [Grünbaumian] o3x5/4x5/2x5/3*a3*c - [Grünbaumian] x3x5/4x5/2x5/3*a3*c - [Grünbaumian] |
x3/2x5/4o5/2o5/2*a3/2*c - [Grünbaumian] x3/2o5/4x5/2o5/2*a3/2*c - [Grünbaumian] x3/2o5/4o5/2x5/2*a3/2*c - [Grünbaumian] o3/2x5/4x5/2o5/2*a3/2*c - [Grünbaumian] o3/2x5/4o5/2x5/2*a3/2*c - o3/2o5/4x5/2x5/2*a3/2*c - [Grünbaumian] x3/2x5/4x5/2o5/2*a3/2*c - [Grünbaumian] x3/2x5/4o5/2x5/2*a3/2*c - [Grünbaumian] x3/2o5/4x5/2x5/2*a3/2*c - [Grünbaumian] o3/2x5/4x5/2x5/2*a3/2*c - [Grünbaumian] x3/2x5/4x5/2x5/2*a3/2*c - [Grünbaumian] |
x3/2x5/4o5/3o5/3*a3/2*c - [Grünbaumian] x3/2o5/4x5/3o5/3*a3/2*c - [Grünbaumian] x3/2o5/4o5/3x5/3*a3/2*c - (contains "2gike") o3/2x5/4x5/3o5/3*a3/2*c - [Grünbaumian] o3/2x5/4o5/3x5/3*a3/2*c - o3/2o5/4x5/3x5/3*a3/2*c - gefidtethi x3/2x5/4x5/3o5/3*a3/2*c - [Grünbaumian] x3/2x5/4o5/3x5/3*a3/2*c - [Grünbaumian] x3/2o5/4x5/3x5/3*a3/2*c - [Grünbaumian] o3/2x5/4x5/3x5/3*a3/2*c - [Grünbaumian] x3/2x5/4x5/3x5/3*a3/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3o5/3o5o5*a3/2*c (µ=54) | o3o5/2o5/4o5*a3*c (µ=66) | o3o5/2o5o5/4*a3*c (µ=174) | o3/2o5/2o5o5*a3/2*c (µ=186) | |
quasiregulars |
x3o5/3o5o5*a3/2*c - (contains cid) o3x5/3o5o5*a3/2*c - sishi+ofiddady o3o5/3x5o5*a3/2*c - (contains cid) o3o5/3o5x5*a3/2*c - (contains "2doe") |
x3o5/2o5/4o5*a3*c - (contains cid) o3x5/2o5/4o5*a3*c - sishi+ofiddady o3o5/2x5/4o5*a3*c - (contains cid) o3o5/2o5/4x5*a3*c - (contains "2doe") |
x3o5/2o5o5/4*a3*c - (contains cid) o3x5/2o5o5/4*a3*c - sishi+ofiddady o3o5/2x5o5/4*a3*c - (contains cid) o3o5/2o5x5/4*a3*c - (contains "2doe") |
x3/2o5/2o5o5*a3/2*c - (contains cid) o3/2x5/2o5o5*a3/2*c - sishi+ofiddady o3/2o5/2x5o5*a3/2*c - (contains cid) o3/2o5/2o5x5*a3/2*c - (contains "2doe") |
other Wythoffians |
x3x5/3o5o5*a3/2*c - (contains cid) x3o5/3x5o5*a3/2*c - [Grünbaumian] x3o5/3o5x5*a3/2*c - (contains "2ike") o3x5/3x5o5*a3/2*c - (contains cid) o3x5/3o5x5*a3/2*c - o3o5/3x5x5*a3/2*c - sefidtethi x3x5/3x5o5*a3/2*c - [Grünbaumian] x3x5/3o5x5*a3/2*c - x3o5/3x5x5*a3/2*c - [Grünbaumian] o3x5/3x5x5*a3/2*c - x3x5/3x5x5*a3/2*c - [Grünbaumian] |
x3x5/2o5/4o5*a3*c - (contains cid) x3o5/2x5/4o5*a3*c - (contains "2gidhei") x3o5/2o5/4x5*a3*c - (contains "2ike") o3x5/2x5/4o5*a3*c - [Grünbaumian] o3x5/2o5/4x5*a3*c - o3o5/2x5/4x5*a3*c - [Grünbaumian] x3x5/2x5/4o5*a3*c - [Grünbaumian] x3x5/2o5/4x5*a3*c - x3o5/2x5/4x5*a3*c - [Grünbaumian] o3x5/2x5/4x5*a3*c - [Grünbaumian] x3x5/2x5/4x5*a3*c - [Grünbaumian] |
x3x5/2o5o5/4*a3*c - (contains cid) x3o5/2x5o5/4*a3*c - (contains "2gidhei") x3o5/2o5x5/4*a3*c - [Grünbaumian] o3x5/2x5o5/4*a3*c - [Grünbaumian] o3x5/2o5x5/4*a3*c - o3o5/2x5x5/4*a3*c - sefidtethi x3x5/2x5o5/4*a3*c - [Grünbaumian] x3x5/2o5x5/4*a3*c - [Grünbaumian] x3o5/2x5x5/4*a3*c - [Grünbaumian] o3x5/2x5x5/4*a3*c - [Grünbaumian] x3x5/2x5x5/4*a3*c - [Grünbaumian] |
x3/2x5/2o5o5*a3/2*c - [Grünbaumian] x3/2o5/2x5o5*a3/2*c - [Grünbaumian] x3/2o5/2o5x5*a3/2*c - (contains "2ike") o3/2x5/2x5o5*a3/2*c - [Grünbaumian] o3/2x5/2o5x5*a3/2*c - o3/2o5/2x5x5*a3/2*c - sefidtethi x3/2x5/2x5o5*a3/2*c - [Grünbaumian] x3/2x5/2o5x5*a3/2*c - [Grünbaumian] x3/2o5/2x5x5*a3/2*c - [Grünbaumian] o3/2x5/2x5x5*a3/2*c - [Grünbaumian] x3/2x5/2x5x5*a3/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o5/3o5o5/4*a3*c (µ=1026) | o3/2o5/3o5/4o5*a3*c (µ=1134) | o3o5/3o5/4o5/4*a3/2*c (µ=2106) | o3/2o5/2o5/4o5/4*a3/2*c (µ=2454) | |
quasiregulars |
x3/2o5/3o5o5/4*a3*c - (contains cid) o3/2x5/3o5o5/4*a3*c - sishi+ofiddady o3/2o5/3x5o5/4*a3*c - (contains cid) o3/2o5/3o5x5/4*a3*c - (contains "2doe") |
x3/2o5/3o5/4o5*a3*c - (contains cid) o3/2x5/3o5/4o5*a3*c - sishi+ofiddady o3/2o5/3x5/4o5*a3*c - (contains cid) o3/2o5/3o5/4x5*a3*c - (contains "2doe") |
x3/2o5/3o5/4o5/4*a3/2*c - (contains cid) o3x5/3o5/4o5/4*a3/2*c - sishi+ofiddady o3o5/3x5/4o5/4*a3/2*c - (contains cid) o3o5/3o5/4x5/4*a3/2*c - (contains "2doe") |
x3/2o5/2o5/4o5/4*a3/2*c - (contains cid) o3/2x5/2o5/4o5/4*a3/2*c - sishi+ofiddady o3/2o5/2x5/4o5/4*a3/2*c - (contains cid) o3/2o5/2o5/4x5/4*a3/2*c - (contains "2doe") |
other Wythoffians |
x3/2x5/3o5o5/4*a3*c - [Grünbaumian] x3/2o5/3x5o5/4*a3*c - (contains "2gidhei") x3/2o5/3o5x5/4*a3*c - [Grünbaumian] o3/2x5/3x5o5/4*a3*c - (contains cid) o3/2x5/3o5x5/4*a3*c - o3/2o5/3x5x5/4*a3*c - sefidtethi x3/2x5/3x5o5/4*a3*c - [Grünbaumian] x3/2x5/3o5x5/4*a3*c - [Grünbaumian] x3/2o5/3x5x5/4*a3*c - [Grünbaumian] o3/2x5/3x5x5/4*a3*c - x3/2x5/3x5x5/4*a3*c - [Grünbaumian] |
x3/2x5/3o5/4o5*a3*c - [Grünbaumian] x3/2o5/3x5/4o5*a3*c - (contains "2gidhei") x3/2o5/3o5/4x5*a3*c - (contains "2ike") o3/2x5/3x5/4o5*a3*c - (contains cid) o3/2x5/3o5/4x5*a3*c - o3/2o5/3x5/4x5*a3*c - [Grünbaumian] x3/2x5/3x5/4o5*a3*c - [Grünbaumian] x3/2x5/3o5/4x5*a3*c - [Grünbaumian] x3/2o5/3x5/4x5*a3*c - [Grünbaumian] o3/2x5/3x5/4x5*a3*c - [Grünbaumian] x3/2x5/3x5/4x5*a3*c - [Grünbaumian] |
x3x5/3o5/4o5/4*a3/2*c - (contains cid) x3o5/3x5/4o5/4*a3/2*c - [Grünbaumian] x3o5/3o5/4x5/4*a3/2*c - [Grünbaumian] o3x5/3x5/4o5/4*a3/2*c - (contains cid) o3x5/3o5/4x5/4*a3/2*c - o3o5/3x5/4x5/4*a3/2*c - [Grünbaumian] x3x5/3x5/4o5/4*a3/2*c - [Grünbaumian] x3x5/3o5/4x5/4*a3/2*c - [Grünbaumian] x3o5/3x5/4x5/4*a3/2*c - [Grünbaumian] o3x5/3x5/4x5/4*a3/2*c - [Grünbaumian] x3x5/3x5/4x5/4*a3/2*c - [Grünbaumian] |
x3/2x5/2o5/4o5/4*a3/2*c - [Grünbaumian] x3/2o5/2x5/4o5/4*a3/2*c - [Grünbaumian] x3/2o5/2o5/4x5/4*a3/2*c - [Grünbaumian] o3/2x5/2x5/4o5/4*a3/2*c - [Grünbaumian] o3/2x5/2o5/4x5/4*a3/2*c - o3/2o5/2x5/4x5/4*a3/2*c - [Grünbaumian] x3/2x5/2x5/4o5/4*a3/2*c - [Grünbaumian] x3/2x5/2o5/4x5/4*a3/2*c - [Grünbaumian] x3/2o5/2x5/4x5/4*a3/2*c - [Grünbaumian] o3/2x5/2x5/4x5/4*a3/2*c - [Grünbaumian] x3/2x5/2x5/4x5/4*a3/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o5o5/2o5o5/2*a3/2*c (µ=70) | o5o5/3o5o5/3*a3*c (µ=190) | o5o5/3o5/4o5/2*a3*c (µ=290) | |
quasiregulars |
x5o5/2o5o5/2*a3/2*c - (contains cid) o5x5/2o5o5/2*a3/2*c - sishi+gaghi+idhi |
x5o5/3o5o5/3*a3*c - (contains cid) o5x5/3o5o5/3*a3*c - sishi+gaghi+idhi |
x5o5/3o5/4o5/2*a3*c - (contains cid) o5x5/3o5/4o5/2*a3*c - sishi+gaghi+idhi o5o5/3x5/4o5/2*a3*c - (contains cid) o5o5/3o5/4x5/2*a3*c - sishi+gaghi+idhi |
other Wythoffians |
x5x5/2o5o5/2*a3/2*c - (contains gacid) x5o5/2x5o5/2*a3/2*c - [Grünbaumian] x5o5/2o5x5/2*a3/2*c - [Grünbaumian] o5x5/2o5x5/2*a3/2*c - "2ridditdy" x5x5/2x5o5/2*a3/2*c - [Grünbaumian] x5x5/2o5x5/2*a3/2*c - [Grünbaumian] x5x5/2x5x5/2*a3/2*c - [Grünbaumian] |
x5x5/3o5o5/3*a3*c - (contains gacid) x5o5/3x5o5/3*a3*c - "2dittafady" x5o5/3o5x5/3*a3*c - (contains cid) o5x5/3o5x5/3*a3*c - x5x5/3x5o5/3*a3*c - ebdah hithi x5x5/3o5x5/3*a3*c - x5x5/3x5x5/3*a3*c - "2affidhi" |
x5x5/3o5/4o5/2*a3*c - (contains gacid) x5o5/3x5/4o5/2*a3*c - "2dittafady" x5o5/3o5/4x5/2*a3*c - [Grünbaumian] o5x5/3x5/4o5/2*a3*c - o5x5/3o5/4x5/2*a3*c - o5o5/3x5/4x5/2*a3*c - [Grünbaumian] x5x5/3x5/4o5/2*a3*c - ebdah hithi x5x5/3o5/4x5/2*a3*c - [Grünbaumian] x5o5/3x5/4x5/2*a3*c - [Grünbaumian] o5x5/3x5/4x5/2*a3*c - [Grünbaumian] x5x5/3x5/4x5/2*a3*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o5o5/2o5/4o5/3*a3/2*c (µ=890) | o5/4o5/2o5/4o5/2*a3*c (µ=1630) | o5/4o5/3o5/4o5/3*a3/2*c (µ=2950) | |
quasiregulars |
x5o5/2o5/4o5/3*a3/2*c - (contains cid) o5x5/2o5/4o5/3*a3/2*c - sishi+gaghi+idhi o5o5/2x5/4o5/3*a3/2*c - (contains cid) o5o5/2o5/4x5/3*a3/2*c - sishi+gaghi+idhi |
x5/4o5/2o5/4o5/2*a3*c - (contains cid) o5/4x5/2o5/4o5/2*a3*c - sishi+gaghi+idhi |
x5/4o5/3o5/4o5/3*a3/2*c - (contains cid) o5/4x5/3o5/4o5/3*a3/2*c - sishi+gaghi+idhi |
other Wythoffians |
x5x5/2o5/4o5/3*a3/2*c - (contains gacid) x5o5/2x5/4o5/3*a3/2*c - [Grünbaumian] x5o5/2o5/4x5/3*a3/2*c - (contains cid) o5x5/2x5/4o5/3*a3/2*c - [Grünbaumian] o5x5/2o5/4x5/3*a3/2*c - o5o5/2x5/4x5/3*a3/2*c - [Grünbaumian] x5x5/2x5/4o5/3*a3/2*c - [Grünbaumian] x5x5/2o5/4x5/3*a3/2*c - x5o5/2x5/4x5/3*a3/2*c - [Grünbaumian] o5x5/2x5/4x5/3*a3/2*c - [Grünbaumian] x5x5/2x5/4x5/3*a3/2*c - [Grünbaumian] |
x5/4x5/2o5/4o5/2*a3*c - [Grünbaumian] x5/4o5/2x5/4o5/2*a3*c - "2dittafady" x5/4o5/2o5/4x5/2*a3*c - [Grünbaumian] o5/4x5/2o5/4x5/2*a3*c - x5/4x5/2x5/4o5/2*a3*c - [Grünbaumian] x5/4x5/2o5/4x5/2*a3*c - [Grünbaumian] x5/4x5/2x5/4x5/2*a3*c - [Grünbaumian] |
x5/4x5/3o5/4o5/3*a3/2*c - [Grünbaumian] x5/4o5/3x5/4o5/3*a3/2*c - [Grünbaumian] x5/4o5/3o5/4x5/3*a3/2*c - (contains cid) o5/4x5/3o5/4x5/3*a3/2*c - x5/4x5/3x5/4o5/3*a3/2*c - [Grünbaumian] x5/4x5/3o5/4x5/3*a3/2*c - [Grünbaumian] x5/4x5/3x5/4x5/3*a3/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3/2o3/2o5*a5*c (µ=21) | o3o3o3o5*a5/4*c (µ=99) | o3/2o3o3/2o5*a5*c (µ=219) | o3/2o3o3o5/4*a5*c (µ=501) | |
quasiregulars |
x3o3/2o3/2o5*a5*c - (contains "2doe") o3x3/2o3/2o5*a5*c - (contains "2gike") o3o3/2x3/2o5*a5*c - (contains cid) o3o3/2o3/2x5*a5*c - (contains cid) |
x3o3o3o5*a5/4*c - (contains "2doe") o3x3o3o5*a5/4*c - (contains "2gike") o3o3x3o5*a5/4*c - (contains cid) o3o3o3x5*a5/4*c - (contains cid) |
x3/2o3o3/2o5*a5*c - (contains "2doe") o3/2x3o3/2o5*a5*c - (contains "2gike") o3/2o3x3/2o5*a5*c - (contains cid) o3/2o3o3/2x5*a5*c - (contains cid) |
x3/2o3o3o5/4*a5*c - (contains "2doe") o3/2x3o3o5/4*a5*c - (contains "2gike") o3/2o3x3o5/4*a5*c - (contains cid) o3/2o3o3x5/4*a5*c - (contains cid) |
other Wythoffians |
x3x3/2o3/2o5*a5*c - (contains "2doe") x3o3/2x3/2o5*a5*c - (contains "2seihid") x3o3/2o3/2x5*a5*c - stut xethi o3x3/2x3/2o5*a5*c - [Grünbaumian] o3x3/2o3/2x5*a5*c - o3o3/2x3/2x5*a5*c - [Grünbaumian] x3x3/2x3/2o5*a5*c - [Grünbaumian] x3x3/2o3/2x5*a5*c - sik vixathi x3o3/2x3/2x5*a5*c - [Grünbaumian] o3x3/2x3/2x5*a5*c - [Grünbaumian] x3x3/2x3/2x5*a5*c - [Grünbaumian] |
x3x3o3o5*a5/4*c - (contains "2doe") x3o3x3o5*a5/4*c - [Grünbaumian] x3o3o3x5*a5/4*c - stut xethi o3x3x3o5*a5/4*c - (contains cid) o3x3o3x5*a5/4*c - o3o3x3x5*a5/4*c - (contains "2gidhei") x3x3x3o5*a5/4*c - [Grünbaumian] x3x3o3x5*a5/4*c - sik vixathi x3o3x3x5*a5/4*c - [Grünbaumian] o3x3x3x5*a5/4*c - x3x3x3x5*a5/4*c - [Grünbaumian] |
x3/2x3o3/2o5*a5*c - [Grünbaumian] x3/2o3x3/2o5*a5*c - (contains "2seihid") x3/2o3o3/2x5*a5*c - stut xethi o3/2x3x3/2o5*a5*c - (contains cid) o3/2x3o3/2x5*a5*c - o3/2o3x3/2x5*a5*c - [Grünbaumian] x3/2x3x3/2o5*a5*c - [Grünbaumian] x3/2x3o3/2x5*a5*c - [Grünbaumian] x3/2o3x3/2x5*a5*c - [Grünbaumian] o3/2x3x3/2x5*a5*c - [Grünbaumian] x3/2x3x3/2x5*a5*c - [Grünbaumian] |
x3/2x3o3o5/4*a5*c - [Grünbaumian] x3/2o3x3o5/4*a5*c - (contains "2seihid") x3/2o3o3x5/4*a5*c - [Grünbaumian] o3/2x3x3o5/4*a5*c - (contains cid) o3/2x3o3x5/4*a5*c - o3/2o3x3x5/4*a5*c - (contains "2gidhei") x3/2x3x3o5/4*a5*c - [Grünbaumian] x3/2x3o3x5/4*a5*c - [Grünbaumian] x3/2o3x3x5/4*a5*c - [Grünbaumian] o3/2x3x3x5/4*a5*c - x3/2x3x3x5/4*a5*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3o3/2o3o5/4*a5*c (µ=699) | o3/2o3/2o3o5*a5/4*c (µ=1101) | o3o3o3/2o5/4*a5/4*c (µ=1581) | o3/2o3/2o3/2o5/4*a5/4*c (µ=2979) | |
quasiregulars |
x3o3/2o3o5/4*a5*c - (contains "2doe") o3x3/2o3o5/4*a5*c - (contains "2gike") o3o3/2x3o5/4*a5*c - (contains cid) o3o3/2o3x5/4*a5*c - (contains cid) |
x3/2o3/2o3o5*a5/4*c - (contains "2doe") o3/2x3/2o3o5*a5/4*c - (contains "2gike") o3/2o3/2x3o5*a5/4*c - (contains cid) o3/2o3/2o3x5*a5/4*c - (contains cid) |
x3o3o3/2o5/4*a5/4*c - (contains "2doe") o3x3o3/2o5/4*a5/4*c - (contains "2gike") o3o3x3/2o5/4*a5/4*c - (contains cid) o3o3o3/2x5/4*a5/4*c - (contains cid) |
x3/2o3/2o3/2o5/4*a5/4*c - (contains "2doe") o3/2x3/2o3/2o5/4*a5/4*c - (contains "2gike") o3/2o3/2x3/2o5/4*a5/4*c - (contains cid) o3/2o3/2o3/2x5/4*a5/4*c - (contains cid) |
other Wythoffians |
x3x3/2o3o5/4*a5*c - (contains "2doe") x3o3/2x3o5/4*a5*c - (contains "2seihid") x3o3/2o3x5/4*a5*c - [Grünbaumian] o3x3/2x3o5/4*a5*c - [Grünbaumian] o3x3/2o3x5/4*a5*c - o3o3/2x3x5/4*a5*c - (contains "2gidhei") x3x3/2x3o5/4*a5*c - [Grünbaumian] x3x3/2o3x5/4*a5*c - [Grünbaumian] x3o3/2x3x5/4*a5*c - [Grünbaumian] o3x3/2x3x5/4*a5*c - [Grünbaumian] x3x3/2x3x5/4*a5*c - [Grünbaumian] |
x3/2x3/2o3o5*a5/4*c - [Grünbaumian] x3/2o3/2x3o5*a5/4*c - [Grünbaumian] x3/2o3/2o3x5*a5/4*c - stut xethi o3/2x3/2x3o5*a5/4*c - [Grünbaumian] o3/2x3/2o3x5*a5/4*c - o3/2o3/2x3x5*a5/4*c - (contains "2gidhei") x3/2x3/2x3o5*a5/4*c - [Grünbaumian] x3/2x3/2o3x5*a5/4*c - [Grünbaumian] x3/2o3/2x3x5*a5/4*c - [Grünbaumian] o3/2x3/2x3x5*a5/4*c - [Grünbaumian] x3/2x3/2x3x5*a5/4*c - [Grünbaumian] |
x3x3o3/2o5/4*a5/4*c - (contains "2doe") x3o3x3/2o5/4*a5/4*c - [Grünbaumian] x3o3o3/2x5/4*a5/4*c - [Grünbaumian] o3x3x3/2o5/4*a5/4*c - (contains cid) o3x3o3/2x5/4*a5/4*c - o3o3x3/2x5/4*a5/4*c - [Grünbaumian] x3x3x3/2o5/4*a5/4*c - [Grünbaumian] x3x3o3/2x5/4*a5/4*c - [Grünbaumian] x3o3x3/2x5/4*a5/4*c - [Grünbaumian] o3x3x3/2x5/4*a5/4*c - [Grünbaumian] x3x3x3/2x5/4*a5/4*c - [Grünbaumian] |
x3/2x3/2o3/2o5/4*a5/4*c - [Grünbaumian] x3/2o3/2x3/2o5/4*a5/4*c - [Grünbaumian] x3/2o3/2o3/2x5/4*a5/4*c - [Grünbaumian] o3/2x3/2x3/2o5/4*a5/4*c - [Grünbaumian] o3/2x3/2o3/2x5/4*a5/4*c - o3/2o3/2x3/2x5/4*a5/4*c - [Grünbaumian] x3/2x3/2x3/2o5/4*a5/4*c - [Grünbaumian] x3/2x3/2o3/2x5/4*a5/4*c - [Grünbaumian] x3/2o3/2x3/2x5/4*a5/4*c - [Grünbaumian] o3/2x3/2x3/2x5/4*a5/4*c - [Grünbaumian] x3/2x3/2x3/2x5/4*a5/4*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3o3o3o5/3*a5/2*c (µ=69) | o3o3o3/2o5/2*a5/2*c (µ=171) | o3/2o3o3o5/2*a5/3*c (µ=531) | o3o3/2o3o5/2*a5/3*c (µ=669) | |
quasiregulars |
x3o3o3o5/3*a5/2*c - (contains "2gissid") o3x3o3o5/3*a5/2*c - (contains "2ike") o3o3x3o5/3*a5/2*c - (contains gacid) o3o3o3x5/3*a5/2*c - (contains gacid) |
x3o3o3/2o5/2*a5/2*c - (contains "2gissid") o3x3o3/2o5/2*a5/2*c - (contains "2ike") o3o3x3/2o5/2*a5/2*c - (contains gacid) o3o3o3/2x5/2*a5/2*c - (contains gacid) |
x3/2o3o3o5/2*a5/3*c - (contains "2gissid") o3/2x3o3o5/2*a5/3*c - (contains "2ike") o3/2o3x3o5/2*a5/3*c - (contains gacid) o3/2o3o3x5/2*a5/3*c - (contains gacid) |
x3o3/2o3o5/2*a5/3*c - (contains "2gissid") o3x3/2o3o5/2*a5/3*c - (contains "2ike") o3o3/2x3o5/2*a5/3*c - (contains gacid) o3o3/2o3x5/2*a5/3*c - (contains gacid) |
other Wythoffians |
x3x3o3o5/3*a5/2*c - (contains "2gissid") x3o3x3o5/3*a5/2*c - [Grünbaumian] x3o3o3x5/3*a5/2*c - getit xethi o3x3x3o5/3*a5/2*c - (contains gacid) o3x3o3x5/3*a5/2*c - o3o3x3x5/3*a5/2*c - (contains "2sidhei") x3x3x3o5/3*a5/2*c - [Grünbaumian] x3x3o3x5/3*a5/2*c - gik vixathi x3o3x3x5/3*a5/2*c - [Grünbaumian] o3x3x3x5/3*a5/2*c - x3x3x3x5/3*a5/2*c - [Grünbaumian] |
x3x3o3/2o5/2*a5/2*c - (contains "2gissid") x3o3x3/2o5/2*a5/2*c - [Grünbaumian] x3o3o3/2x5/2*a5/2*c - [Grünbaumian] o3x3x3/2o5/2*a5/2*c - (contains gacid) o3x3o3/2x5/2*a5/2*c - o3o3x3/2x5/2*a5/2*c - [Grünbaumian] x3x3x3/2o5/2*a5/2*c - [Grünbaumian] x3x3o3/2x5/2*a5/2*c - [Grünbaumian] x3o3x3/2x5/2*a5/2*c - [Grünbaumian] o3x3x3/2x5/2*a5/2*c - [Grünbaumian] x3x3x3/2x5/2*a5/2*c - [Grünbaumian] |
x3/2x3o3o5/2*a5/3*c - [Grünbaumian] x3/2o3x3o5/2*a5/3*c - (contains "2geihid") x3/2o3o3x5/2*a5/3*c - [Grünbaumian] o3/2x3x3o5/2*a5/3*c - (contains gacid) o3/2x3o3x5/2*a5/3*c - o3/2o3x3x5/2*a5/3*c - (contains "2sidhei") x3/2x3x3o5/2*a5/3*c - [Grünbaumian] x3/2x3o3x5/2*a5/3*c - [Grünbaumian] x3/2o3x3x5/2*a5/3*c - [Grünbaumian] o3/2x3x3x5/2*a5/3*c - x3/2x3x3x5/2*a5/3*c - [Grünbaumian] |
x3x3/2o3o5/2*a5/3*c - (contains "2gissid") x3o3/2x3o5/2*a5/3*c - (contains "2geihid") x3o3/2o3x5/2*a5/3*c - [Grünbaumian] o3x3/2x3o5/2*a5/3*c - [Grünbaumian] o3x3/2o3x5/2*a5/3*c - o3o3/2x3x5/2*a5/3*c - (contains "2sidhei") x3x3/2x3o5/2*a5/3*c - [Grünbaumian] x3x3/2o3x5/2*a5/3*c - [Grünbaumian] x3o3/2x3x5/2*a5/3*c - [Grünbaumian] o3x3/2x3x5/2*a5/3*c - [Grünbaumian] x3x3/2x3x5/2*a5/3*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o3/2o3o5/3*a5/2*c (µ=1131) | o3o3/2o3/2o5/3*a5/3*c (µ=1491) | o3/2o3/2o3/2o5/2*a5/2*c (µ=1509) | o3/2o3o3/2o5/3*a5/3*c (µ=1629) | |
quasiregulars |
x3/2o3/2o3o5/3*a5/2*c - (contains "2gissid") o3/2x3/2o3o5/3*a5/2*c - (contains "2ike") o3/2o3/2x3o5/3*a5/2*c - (contains gacid) o3/2o3/2o3x5/3*a5/2*c - (contains gacid) |
x3o3/2o3/2o5/3*a5/3*c - (contains "2gissid") o3x3/2o3/2o5/3*a5/3*c - (contains "2ike") o3o3/2x3/2o5/3*a5/3*c - (contains gacid) o3o3/2o3/2x5/3*a5/3*c - (contains gacid) |
x3/2o3/2o3/2o5/2*a5/2*c - (contains "2gissid") o3/2x3/2o3/2o5/2*a5/2*c - (contains "2ike") o3/2o3/2x3/2o5/2*a5/2*c - (contains gacid) o3/2o3/2o3/2x5/2*a5/2*c - (contains gacid) |
x3/2o3o3/2o5/3*a5/3*c - (contains "2gissid") o3/2x3o3/2o5/3*a5/3*c - (contains "2ike") o3/2o3x3/2o5/3*a5/3*c - (contains gacid) o3/2o3o3/2x5/3*a5/3*c - (contains gacid) |
other Wythoffians |
x3/2x3/2o3o5/3*a5/2*c - [Grünbaumian] x3/2o3/2x3o5/3*a5/2*c - [Grünbaumian] x3/2o3/2o3x5/3*a5/2*c - getit xethi o3/2x3/2x3o5/3*a5/2*c - [Grünbaumian] o3/2x3/2o3x5/3*a5/2*c - o3/2o3/2x3x5/3*a5/2*c - (contains "2sidhei") x3/2x3/2x3o5/3*a5/2*c - [Grünbaumian] x3/2x3/2o3x5/3*a5/2*c - [Grünbaumian] x3/2o3/2x3x5/3*a5/2*c - [Grünbaumian] o3/2x3/2x3x5/3*a5/2*c - [Grünbaumian] x3/2x3/2x3x5/3*a5/2*c - [Grünbaumian] |
x3x3/2o3/2o5/3*a5/3*c - (contains "2gissid") x3o3/2x3/2o5/3*a5/3*c - (contains "2geihid") x3o3/2o3/2x5/3*a5/3*c - getit xethi o3x3/2x3/2o5/3*a5/3*c - [Grünbaumian] o3x3/2o3/2x5/3*a5/3*c - o3o3/2x3/2x5/3*a5/3*c - [Grünbaumian] x3x3/2x3/2o5/3*a5/3*c - [Grünbaumian] x3x3/2o3/2x5/3*a5/3*c - gik vixathi x3o3/2x3/2x5/3*a5/3*c - [Grünbaumian] o3x3/2x3/2x5/3*a5/3*c - [Grünbaumian] x3x3/2x3/2x5/3*a5/3*c - [Grünbaumian] |
x3/2x3/2o3/2o5/2*a5/2*c - [Grünbaumian] x3/2o3/2x3/2o5/2*a5/2*c - [Grünbaumian] x3/2o3/2o3/2x5/2*a5/2*c - [Grünbaumian] o3/2x3/2x3/2o5/2*a5/2*c - [Grünbaumian] o3/2x3/2o3/2x5/2*a5/2*c - o3/2o3/2x3/2x5/2*a5/2*c - [Grünbaumian] x3/2x3/2x3/2o5/2*a5/2*c - [Grünbaumian] x3/2x3/2o3/2x5/2*a5/2*c - [Grünbaumian] x3/2o3/2x3/2x5/2*a5/2*c - [Grünbaumian] o3/2x3/2x3/2x5/2*a5/2*c - [Grünbaumian] x3/2x3/2x3/2x5/2*a5/2*c - [Grünbaumian] |
x3/2x3o3/2o5/3*a5/3*c - [Grünbaumian] x3/2o3x3/2o5/3*a5/3*c - (contains "2geihid") x3/2o3o3/2x5/3*a5/3*c - getit xethi o3/2x3x3/2o5/3*a5/3*c - (contains gacid) o3/2x3o3/2x5/3*a5/3*c - o3/2o3x3/2x5/3*a5/3*c - [Grünbaumian] x3/2x3x3/2o5/3*a5/3*c - [Grünbaumian] x3/2x3o3/2x5/3*a5/3*c - [Grünbaumian] x3/2o3x3/2x5/3*a5/3*c - [Grünbaumian] o3/2x3x3/2x5/3*a5/3*c - [Grünbaumian] x3/2x3x3/2x5/3*a5/3*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o3o3o5/3*a5*c (µ=181) | o3o3/2o3o5/3*a5*c (µ=299) | o3o3o3o5/2*a5/4*c (µ=419) | o3o3/2o3/2o5/2*a5*c (µ=421) | |
quasiregulars |
x3/2o3o3o5/3*a5*c - gardatady+1440{5} o3/2x3o3o5/3*a5*c - (contains "2gike") o3/2o3x3o5/3*a5*c - (contains cid) o3/2o3o3x5/3*a5*c - (contains gacid) |
x3o3/2o3o5/3*a5*c - gardatady+1440{5} o3x3/2o3o5/3*a5*c - (contains "2gike") o3o3/2x3o5/3*a5*c - (contains cid) o3o3/2o3x5/3*a5*c - (contains gacid) |
x3o3o3o5/2*a5/4*c - gardatady+1440{5} o3x3o3o5/2*a5/4*c - (contains "2gike") o3o3x3o5/2*a5/4*c - (contains cid) o3o3o3x5/2*a5/4*c - (contains gacid) |
x3o3/2o3/2o5/2*a5*c - gardatady+1440{5} o3x3/2o3/2o5/2*a5*c - (contains "2gike") o3o3/2x3/2o5/2*a5*c - (contains cid) o3o3/2o3/2x5/2*a5*c - (contains gacid) |
other Wythoffians |
x3/2x3o3o5/3*a5*c - [Grünbaumian] x3/2o3x3o5/3*a5*c - (contains "2seihid") x3/2o3o3x5/3*a5*c - git thixady o3/2x3x3o5/3*a5*c - (contains cid) o3/2x3o3x5/3*a5*c - o3/2o3x3x5/3*a5*c - gefirdit xethi x3/2x3x3o5/3*a5*c - [Grünbaumian] x3/2x3o3x5/3*a5*c - [Grünbaumian] x3/2o3x3x5/3*a5*c - (contains "2seihid") o3/2x3x3x5/3*a5*c - x3/2x3x3x5/3*a5*c - [Grünbaumian] |
x3x3/2o3o5/3*a5*c - getit thix x3o3/2x3o5/3*a5*c - (contains "2seihid") x3o3/2o3x5/3*a5*c - git thixady o3x3/2x3o5/3*a5*c - [Grünbaumian] o3x3/2o3x5/3*a5*c - o3o3/2x3x5/3*a5*c - gefirdit xethi x3x3/2x3o5/3*a5*c - [Grünbaumian] x3x3/2o3x5/3*a5*c - x3o3/2x3x5/3*a5*c - (contains "2seihid") o3x3/2x3x5/3*a5*c - [Grünbaumian] x3x3/2x3x5/3*a5*c - [Grünbaumian] |
x3x3o3o5/2*a5/4*c - getit thix x3o3x3o5/2*a5/4*c - [Grünbaumian] x3o3o3x5/2*a5/4*c - [Grünbaumian] o3x3x3o5/2*a5/4*c - (contains cid) o3x3o3x5/2*a5/4*c - o3o3x3x5/2*a5/4*c - gefirdit xethi x3x3x3o5/2*a5/4*c - [Grünbaumian] x3x3o3x5/2*a5/4*c - [Grünbaumian] x3o3x3x5/2*a5/4*c - [Grünbaumian] o3x3x3x5/2*a5/4*c - x3x3x3x5/2*a5/4*c - [Grünbaumian] |
x3x3/2o3/2o5/2*a5*c - getit thix x3o3/2x3/2o5/2*a5*c - (contains "2seihid") x3o3/2o3/2x5/2*a5*c - [Grünbaumian] o3x3/2x3/2o5/2*a5*c - [Grünbaumian] o3x3/2o3/2x5/2*a5*c - o3o3/2x3/2x5/2*a5*c - [Grünbaumian] x3x3/2x3/2o5/2*a5*c - [Grünbaumian] x3x3/2o3/2x5/2*a5*c - [Grünbaumian] x3o3/2x3/2x5/2*a5*c - [Grünbaumian] o3x3/2x3/2x5/2*a5*c - [Grünbaumian] x3x3/2x3/2x5/2*a5*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o3o3/2o5/2*a5*c (µ=539) | o3o3o3/2o5/3*a5/4*c (µ=1261) | o3/2o3/2o3o5/2*a5/4*c (µ=1501) | o3/2o3/2o3/2o5/3*a5/4*c (µ=2579) | |
quasiregulars |
x3/2o3o3/2o5/2*a5*c - gardatady+1440{5} o3/2x3o3/2o5/2*a5*c - (contains "2gike") o3/2o3x3/2o5/2*a5*c - (contains cid) o3/2o3o3/2x5/2*a5*c - (contains gacid) |
x3o3o3/2o5/3*a5/4*c - gardatady+1440{5} o3x3o3/2o5/3*a5/4*c - (contains "2gike") o3o3x3/2o5/3*a5/4*c - (contains cid) o3o3o3/2x5/3*a5/4*c - (contains gacid) |
x3/2o3/2o3o5/2*a5/4*c - gardatady+1440{5} o3/2x3/2o3o5/2*a5/4*c - (contains "2gike") o3/2o3/2x3o5/2*a5/4*c - (contains cid) o3/2o3/2o3x5/2*a5/4*c - (contains gacid) |
x3/2o3/2o3/2o5/3*a5/4*c - gardatady+1440{5} o3/2x3/2o3/2o5/3*a5/4*c - (contains "2gike") o3/2o3/2x3/2o5/3*a5/4*c - (contains cid) o3/2o3/2o3/2x5/3*a5/4*c - (contains gacid) |
other Wythoffians |
x3/2x3o3/2o5/2*a5*c - [Grünbaumian] x3/2o3x3/2o5/2*a5*c - (contains "2seihid") x3/2o3o3/2x5/2*a5*c - [Grünbaumian] o3/2x3x3/2o5/2*a5*c - (contains cid) o3/2x3o3/2x5/2*a5*c - o3/2o3x3/2x5/2*a5*c - [Grünbaumian] x3/2x3x3/2o5/2*a5*c - [Grünbaumian] x3/2x3o3/2x5/2*a5*c - [Grünbaumian] x3/2o3x3/2x5/2*a5*c - [Grünbaumian] o3/2x3x3/2x5/2*a5*c - [Grünbaumian] x3/2x3x3/2x5/2*a5*c - [Grünbaumian] |
x3x3o3/2o5/3*a5/4*c - getit thix x3o3x3/2o5/3*a5/4*c - [Grünbaumian] x3o3o3/2x5/3*a5/4*c - git thixady o3x3x3/2o5/3*a5/4*c - (contains cid) o3x3o3/2x5/3*a5/4*c - o3o3x3/2x5/3*a5/4*c - [Grünbaumian] x3x3x3/2o5/3*a5/4*c - [Grünbaumian] x3x3o3/2x5/3*a5/4*c - x3o3x3/2x5/3*a5/4*c - [Grünbaumian] o3x3x3/2x5/3*a5/4*c - [Grünbaumian] x3x3x3/2x5/3*a5/4*c - [Grünbaumian] |
x3/2x3/2o3o5/2*a5/4*c - [Grünbaumian] x3/2o3/2x3o5/2*a5/4*c - [Grünbaumian] x3/2o3/2o3x5/2*a5/4*c - [Grünbaumian] o3/2x3/2x3o5/2*a5/4*c - [Grünbaumian] o3/2x3/2o3x5/2*a5/4*c - o3/2o3/2x3x5/2*a5/4*c - gefirdit xethi x3/2x3/2x3o5/2*a5/4*c - [Grünbaumian] x3/2x3/2o3x5/2*a5/4*c - [Grünbaumian] x3/2o3/2x3x5/2*a5/4*c - [Grünbaumian] o3/2x3/2x3x5/2*a5/4*c - [Grünbaumian] x3/2x3/2x3x5/2*a5/4*c - [Grünbaumian] |
x3/2x3/2o3/2o5/3*a5/4*c - [Grünbaumian] x3/2o3/2x3/2o5/3*a5/4*c - [Grünbaumian] x3/2o3/2o3/2x5/3*a5/4*c - git thixady o3/2x3/2x3/2o5/3*a5/4*c - [Grünbaumian] o3/2x3/2o3/2x5/3*a5/4*c - o3/2o3/2x3/2x5/3*a5/4*c - [Grünbaumian] x3/2x3/2x3/2o5/3*a5/4*c - [Grünbaumian] x3/2x3/2o3/2x5/3*a5/4*c - [Grünbaumian] x3/2o3/2x3/2x5/3*a5/4*c - [Grünbaumian] o3/2x3/2x3/2x5/3*a5/4*c - [Grünbaumian] x3/2x3/2x3/2x5/3*a5/4*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3o3o3/2o5*a5/2*c (µ=11) | o3o3/2o3o5*a5/3*c (µ=109) | o3o3o3o5/4*a5/2*c (µ=229) | o3/2o3o3o5*a5/3*c (µ=371) | |
quasiregulars |
x3o3o3/2o5*a5/2*c - sirdatady+1440{5/2} o3x3o3/2o5*a5/2*c - (contains "2ike") o3o3x3/2o5*a5/2*c - (contains gacid) o3o3o3/2x5*a5/2*c - (contains cid) |
o3o3/2o3o5*a5/3*c - sirdatady+1440{5/2} o3x3/2o3o5*a5/3*c - (contains "2ike") o3o3/2x3o5*a5/3*c - (contains gacid) o3o3/2o3x5*a5/3*c - (contains cid) |
x3o3o3o5/4*a5/2*c - sirdatady+1440{5/2} o3x3o3o5/4*a5/2*c - (contains "2ike") o3o3x3o5/4*a5/2*c - (contains gacid) o3o3o3x5/4*a5/2*c - (contains cid) |
x3/2o3o3o5*a5/3*c - sirdatady+1440{5/2} o3/2x3o3o5*a5/3*c - (contains "2ike") o3/2o3x3o5*a5/3*c - (contains gacid) o3/2o3o3x5*a5/3*c - (contains cid) |
other Wythoffians |
x3x3o3/2o5*a5/2*c - stut thix x3o3x3/2o5*a5/2*c - [Grünbaumian] x3o3o3/2x5*a5/2*c - sit thixady o3x3x3/2o5*a5/2*c - (contains gacid) o3x3o3/2x5*a5/2*c - o3o3x3/2x5*a5/2*c - [Grünbaumian] x3x3x3/2o5*a5/2*c - [Grünbaumian] x3x3o3/2x5*a5/2*c - x3o3x3/2x5*a5/2*c - [Grünbaumian] o3x3x3/2x5*a5/2*c - [Grünbaumian] x3x3x3/2x5*a5/2*c - [Grünbaumian] |
x3x3/2o3o5*a5/3*c - stut thix x3o3/2x3o5*a5/3*c - (contains "2geihid") x3o3/2o3x5*a5/3*c - sit thixady o3x3/2x3o5*a5/3*c - [Grünbaumian] o3x3/2o3x5*a5/3*c - o3o3/2x3x5*a5/3*c - gefridit xethi x3x3/2x3o5*a5/3*c - [Grünbaumian] x3x3/2o3x5*a5/3*c - x3o3/2x3x5*a5/3*c - (contains "2geihid") o3x3/2x3x5*a5/3*c - [Grünbaumian] x3x3/2x3x5*a5/3*c - [Grünbaumian] |
x3x3o3o5/4*a5/2*c - stut thix x3o3x3o5/4*a5/2*c - [Grünbaumian] x3o3o3x5/4*a5/2*c - [Grünbaumian] o3x3x3o5/4*a5/2*c - (contains gacid) o3x3o3x5/4*a5/2*c - o3o3x3x5/4*a5/2*c - gefridit xethi x3x3x3o5/4*a5/2*c - [Grünbaumian] x3x3o3x5/4*a5/2*c - [Grünbaumian] x3o3x3x5/4*a5/2*c - [Grünbaumian] o3x3x3x5/4*a5/2*c - x3x3x3x5/4*a5/2*c - [Grünbaumian] |
x3/2x3o3o5*a5/3*c - [Grünbaumian] x3/2o3x3o5*a5/3*c - (contains "2geihid") x3/2o3o3x5*a5/3*c - sit thixady o3/2x3x3o5*a5/3*c - (contains gacid) o3/2x3o3x5*a5/3*c - o3/2o3x3x5*a5/3*c - gefridit xethi x3/2x3x3o5*a5/3*c - [Grünbaumian] x3/2x3o3x5*a5/3*c - [Grünbaumian] x3/2o3x3x5*a5/3*c - (contains "2geihid") o3/2x3x3x5*a5/3*c - x3/2x3x3x5*a5/3*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o3/2o3/2o5*a5/2*c (µ=949) | o3/2o3/2o3o5/4*a5/2*c (µ=1691) | o3/2o3o3/2o5/4*a5/3*c (µ=1789) | o3o3/2o3/2o5/4*a5/3*c (µ=2051) | |
quasiregulars |
x3/2o3/2o3/2o5*a5/2*c - sirdatady+1440{5/2} o3/2x3/2o3/2o5*a5/2*c - (contains "2ike") o3/2o3/2x3/2o5*a5/2*c - (contains gacid) o3/2o3/2o3/2x5*a5/2*c - (contains cid) |
x3/2o3/2o3o5/4*a5/2*c - sirdatady+1440{5/2} o3/2x3/2o3o5/4*a5/2*c - (contains "2ike") o3/2o3/2x3o5/4*a5/2*c - (contains gacid) o3/2o3/2o3x5/4*a5/2*c - (contains cid) |
x3/2o3o3/2o5/4*a5/3*c - sirdatady+1440{5/2} o3/2x3o3/2o5/4*a5/3*c - (contains "2ike") o3/2o3x3/2o5/4*a5/3*c - (contains gacid) o3/2o3o3/2x5/4*a5/3*c - (contains cid) |
x3o3/2o3/2o5/4*a5/3*c - sirdatady+1440{5/2} o3x3/2o3/2o5/4*a5/3*c - (contains "2ike") o3o3/2x3/2o5/4*a5/3*c - (contains gacid) o3o3/2o3/2x5/4*a5/3*c - (contains cid) |
other Wythoffians |
x3/2x3/2o3/2o5*a5/2*c - [Grünbaumian] x3/2o3/2x3/2o5*a5/2*c - [Grünbaumian] x3/2o3/2o3/2x5*a5/2*c - sit thixady o3/2x3/2x3/2o5*a5/2*c - [Grünbaumian] o3/2x3/2o3/2x5*a5/2*c - o3/2o3/2x3/2x5*a5/2*c - [Grünbaumian] x3/2x3/2x3/2o5*a5/2*c - [Grünbaumian] x3/2x3/2o3/2x5*a5/2*c - [Grünbaumian] x3/2o3/2x3/2x5*a5/2*c - [Grünbaumian] o3/2x3/2x3/2x5*a5/2*c - [Grünbaumian] x3/2x3/2x3/2x5*a5/2*c - [Grünbaumian] |
x3/2x3/2o3o5/4*a5/2*c - [Grünbaumian] x3/2o3/2x3o5/4*a5/2*c - [Grünbaumian] x3/2o3/2o3x5/4*a5/2*c - [Grünbaumian] o3/2x3/2x3o5/4*a5/2*c - [Grünbaumian] o3/2x3/2o3x5/4*a5/2*c - o3/2o3/2x3x5/4*a5/2*c - gefridit xethi x3/2x3/2x3o5/4*a5/2*c - [Grünbaumian] x3/2x3/2o3x5/4*a5/2*c - [Grünbaumian] x3/2o3/2x3x5/4*a5/2*c - [Grünbaumian] o3/2x3/2x3x5/4*a5/2*c - [Grünbaumian] x3/2x3/2x3x5/4*a5/2*c - [Grünbaumian] |
x3/2x3o3/2o5/4*a5/3*c - [Grünbaumian] x3/2o3x3/2o5/4*a5/3*c - (contains "2geihid") x3/2o3o3/2x5/4*a5/3*c - [Grünbaumian] o3/2x3x3/2o5/4*a5/3*c - (contains gacid) o3/2x3o3/2x5/4*a5/3*c - o3/2o3x3/2x5/4*a5/3*c - [Grünbaumian] x3/2x3x3/2o5/4*a5/3*c - [Grünbaumian] x3/2x3o3/2x5/4*a5/3*c - [Grünbaumian] x3/2o3x3/2x5/4*a5/3*c - [Grünbaumian] o3/2x3x3/2x5/4*a5/3*c - [Grünbaumian] x3/2x3x3/2x5/4*a5/3*c - [Grünbaumian] |
x3x3/2o3/2o5/4*a5/3*c - stut thix x3o3/2x3/2o5/4*a5/3*c - (contains "2geihid") x3o3/2o3/2x5/4*a5/3*c - [Grünbaumian] o3x3/2x3/2o5/4*a5/3*c - [Grünbaumian] o3x3/2o3/2x5/4*a5/3*c - o3o3/2x3/2x5/4*a5/3*c - [Grünbaumian] x3x3/2x3/2o5/4*a5/3*c - [Grünbaumian] x3x3/2o3/2x5/4*a5/3*c - [Grünbaumian] x3o3/2x3/2x5/4*a5/3*c - [Grünbaumian] o3x3/2x3/2x5/4*a5/3*c - [Grünbaumian] x3x3/2x3/2x5/4*a5/3*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o5o5/2o3/2*a5*c (µ=113) | o3/2o5o5/3o3*a5*c (µ=127) | o3o5o5/2o3*a5/4*c (µ=247) | o3o5/4o5/3o3*a5*c (µ=353) | |
quasiregulars |
x3/2o5o5/2o3/2*a5*c - (contains cid) o3/2x5o5/2o3/2*a5*c - (contains cid) o3/2o5x5/2o3/2*a5*c - (contains "2doe") o3/2o5o5/2x3/2*a5*c - (contains gacid) |
x3/2o5o5/3o3*a5*c - (contains cid) o3/2x5o5/3o3*a5*c - (contains cid) o3/2o5x5/3o3*a5*c - (contains "2doe") o3/2o5o5/3x3*a5*c - (contains gacid) |
x3o5o5/2o3*a5/4*c - (contains cid) o3x5o5/2o3*a5/4*c - (contains cid) o3o5x5/2o3*a5/4*c - (contains "2doe") o3o5o5/2x3*a5/4*c - (contains gacid) |
x3o5/4o5/3o3*a5*c - (contains cid) o3x5/4o5/3o3*a5*c - (contains cid) o3o5/4x5/3o3*a5*c - (contains "2doe") o3o5/4o5/3x3*a5*c - (contains gacid) |
other Wythoffians |
x3/2x5o5/2o3/2*a5*c - [Grünbaumian] x3/2o5x5/2o3/2*a5*c - raffixthi x3/2o5o5/2x3/2*a5*c - [Grünbaumian] o3/2x5x5/2o3/2*a5*c - sefradit thix o3/2x5o5/2x3/2*a5*c - o3/2o5x5/2x3/2*a5*c - [Grünbaumian] x3/2x5x5/2o3/2*a5*c - [Grünbaumian] x3/2x5o5/2x3/2*a5*c - [Grünbaumian] x3/2o5x5/2x3/2*a5*c - [Grünbaumian] o3/2x5x5/2x3/2*a5*c - [Grünbaumian] x3/2x5x5/2x3/2*a5*c - [Grünbaumian] |
x3/2x5o5/3o3*a5*c - [Grünbaumian] x3/2o5x5/3o3*a5*c - raffixthi x3/2o5o5/3x3*a5*c - (contains cid) o3/2x5x5/3o3*a5*c - sefradit thix o3/2x5o5/3x3*a5*c - o3/2o5x5/3x3*a5*c - (contains "2doe") x3/2x5x5/3o3*a5*c - [Grünbaumian] x3/2x5o5/3x3*a5*c - [Grünbaumian] x3/2o5x5/3x3*a5*c - hixquitixhi o3/2x5x5/3x3*a5*c - x3/2x5x5/3x3*a5*c - [Grünbaumian] |
x3x5o5/2o3*a5/4*c - (contains cid) x3o5x5/2o3*a5/4*c - [Grünbaumian] x3o5o5/2x3*a5/4*c - (contains cid) o3x5x5/2o3*a5/4*c - sefradit thix o3x5o5/2x3*a5/4*c - o3o5x5/2x3*a5/4*c - [Grünbaumian] x3x5x5/2o3*a5/4*c - [Grünbaumian] x3x5o5/2x3*a5/4*c - x3o5x5/2x3*a5/4*c - [Grünbaumian] o3x5x5/2x3*a5/4*c - [Grünbaumian] x3x5x5/2x3*a5/4*c - [Grünbaumian] |
x3x5/4o5/3o3*a5*c - (contains cid) x3o5/4x5/3o3*a5*c - raffixthi x3o5/4o5/3x3*a5*c - (contains cid) o3x5/4x5/3o3*a5*c - [Grünbaumian] o3x5/4o5/3x3*a5*c - o3o5/4x5/3x3*a5*c - (contains "2doe") x3x5/4x5/3o3*a5*c - [Grünbaumian] x3x5/4o5/3x3*a5*c - x3o5/4x5/3x3*a5*c - hixquitixhi o3x5/4x5/3x3*a5*c - [Grünbaumian] x3x5/4x5/3x3*a5*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3o5/4o5/2o3/2*a5*c (µ=847) | o3o5o5/3o3/2*a5/4*c (µ=953) | o3/2o5/4o5/2o3*a5/4*c (µ=1673) | o3/2o5/4o5/3o3/2*a5/4*c (µ=2887) | |
quasiregulars |
x3o5/4o5/2o3/2*a5*c - (contains cid) o3x5/4o5/2o3/2*a5*c - (contains cid) o3o5/4x5/2o3/2*a5*c - (contains "2doe") o3o5/4o5/2x3/2*a5*c - (contains gacid) |
x3o5o5/3o3/2*a5/4*c - (contains cid) o3x5o5/3o3/2*a5/4*c - (contains cid) o3o5x5/3o3/2*a5/4*c - (contains "2doe") o3o5o5/3x3/2*a5/4*c - (contains gacid) |
x3/2o5/4o5/2o3*a5/4*c - (contains cid) o3/2x5/4o5/2o3*a5/4*c - (contains cid) o3/2o5/4x5/2o3*a5/4*c - (contains "2doe") o3/2o5/4o5/2x3*a5/4*c - (contains gacid) |
x3/2o5/4o5/3o3/2*a5/4*c - (contains cid) o3/2x5/4o5/3o3/2*a5/4*c - (contains cid) o3/2o5/4x5/3o3/2*a5/4*c - (contains "2doe") o3/2o5/4o5/3x3/2*a5/4*c - (contains gacid) |
other Wythoffians |
x3x5/4o5/2o3/2*a5*c - (contains cid) x3o5/4x5/2o3/2*a5*c - raffixthi x3o5/4o5/2x3/2*a5*c - [Grünbaumian] o3x5/4x5/2o3/2*a5*c - [Grünbaumian] o3x5/4o5/2x3/2*a5*c - o3o5/4x5/2x3/2*a5*c - [Grünbaumian] x3x5/4x5/2o3/2*a5*c - [Grünbaumian] x3x5/4o5/2x3/2*a5*c - [Grünbaumian] x3o5/4x5/2x3/2*a5*c - [Grünbaumian] o3x5/4x5/2x3/2*a5*c - [Grünbaumian] x3x5/4x5/2x3/2*a5*c - [Grünbaumian] |
x3x5o5/3o3/2*a5/4*c - (contains cid) x3o5x5/3o3/2*a5/4*c - [Grünbaumian] x3o5o5/3x3/2*a5/4*c - [Grünbaumian] o3x5x5/3o3/2*a5/4*c - sefradit thix o3x5o5/3x3/2*a5/4*c - o3o5x5/3x3/2*a5/4*c - (contains "2doe") x3x5x5/3o3/2*a5/4*c - [Grünbaumian] x3x5o5/3x3/2*a5/4*c - [Grünbaumian] x3o5x5/3x3/2*a5/4*c - [Grünbaumian] o3x5x5/3x3/2*a5/4*c - x3x5x5/3x3/2*a5/4*c - [Grünbaumian] |
x3/2x5/4o5/2o3*a5/4*c - [Grünbaumian] x3/2o5/4x5/2o3*a5/4*c - [Grünbaumian] x3/2o5/4o5/2x3*a5/4*c - (contains cid) o3/2x5/4x5/2o3*a5/4*c - [Grünbaumian] o3/2x5/4o5/2x3*a5/4*c - o3/2o5/4x5/2x3*a5/4*c - [Grünbaumian] x3/2x5/4x5/2o3*a5/4*c - [Grünbaumian] x3/2x5/4o5/2x3*a5/4*c - [Grünbaumian] x3/2o5/4x5/2x3*a5/4*c - [Grünbaumian] o3/2x5/4x5/2x3*a5/4*c - [Grünbaumian] x3/2x5/4x5/2x3*a5/4*c - [Grünbaumian] |
x3/2x5/4o5/3o3/2*a5/4*c - [Grünbaumian] x3/2o5/4x5/3o3/2*a5/4*c - [Grünbaumian] x3/2o5/4o5/3x3/2*a5/4*c - [Grünbaumian] o3/2x5/4x5/3o3/2*a5/4*c - [Grünbaumian] o3/2x5/4o5/3x3/2*a5/4*c - o3/2o5/4x5/3x3/2*a5/4*c - (contains "2doe") x3/2x5/4x5/3o3/2*a5/4*c - [Grünbaumian] x3/2x5/4o5/3x3/2*a5/4*c - [Grünbaumian] x3/2o5/4x5/3x3/2*a5/4*c - [Grünbaumian] o3/2x5/4x5/3x3/2*a5/4*c - [Grünbaumian] x3/2x5/4x5/3x3/2*a5/4*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3o5o5/2o3*a5/3*c (µ=17) | o3/2o5o5/2o3/2*a5/2*c (µ=343) | o3o5o5/3o3/2*a5/3*c (µ=463) | o3o5/4o5/3o3*a5/2*c (µ=583) | |
quasiregulars |
x3o5o5/2o3*a5/3*c - (contains gacid) o3x5o5/2o3*a5/3*c - (contains cid) o3o5x5/2o3*a5/3*c - (contains "2gissid") o3o5o5/2x3*a5/3*c - (contains gacid) |
x3/2o5o5/2o3/2*a5/2*c - (contains gacid) o3/2x5o5/2o3/2*a5/2*c - (contains cid) o3/2o5x5/2o3/2*a5/2*c - (contains "2gissid") o3/2o5o5/2x3/2*a5/2*c - (contains gacid) |
x3o5o5/3o3/2*a5/3*c - (contains gacid) o3x5o5/3o3/2*a5/3*c - (contains cid) o3o5x5/3o3/2*a5/3*c - (contains "2gissid") o3o5o5/3x3/2*a5/3*c - (contains gacid) |
x3o5/4o5/3o3*a5/2*c - (contains gacid) o3x5/4o5/3o3*a5/2*c - (contains cid) o3o5/4x5/3o3*a5/2*c - (contains "2gissid") o3o5/4o5/3x3*a5/2*c - (contains gacid) |
other Wythoffians |
x3x5o5/2o3*a5/3*c - (contains gacid) x3o5x5/2o3*a5/3*c - affixthi x3o5o5/2x3*a5/3*c - (contains gacid) o3x5x5/2o3*a5/3*c - (contains "2gissid") o3x5o5/2x3*a5/3*c - o3o5x5/2x3*a5/3*c - [Grünbaumian] x3x5x5/2o3*a5/3*c - hixtixhi x3x5o5/2x3*a5/3*c - x3o5x5/2x3*a5/3*c - [Grünbaumian] o3x5x5/2x3*a5/3*c - [Grünbaumian] x3x5x5/2x3*a5/3*c - [Grünbaumian] |
x3/2x5o5/2o3/2*a5/2*c - [Grünbaumian] x3/2o5x5/2o3/2*a5/2*c - [Grünbaumian] x3/2o5o5/2x3/2*a5/2*c - [Grünbaumian] o3/2x5x5/2o3/2*a5/2*c - (contains "2gissid") o3/2x5o5/2x3/2*a5/2*c - o3/2o5x5/2x3/2*a5/2*c - [Grünbaumian] x3/2x5x5/2o3/2*a5/2*c - [Grünbaumian] x3/2x5o5/2x3/2*a5/2*c - [Grünbaumian] x3/2o5x5/2x3/2*a5/2*c - [Grünbaumian] o3/2x5x5/2x3/2*a5/2*c - [Grünbaumian] x3/2x5x5/2x3/2*a5/2*c - [Grünbaumian] |
x3x5o5/3o3/2*a5/3*c - (contains gacid) x3o5x5/3o3/2*a5/3*c - affixthi x3o5o5/3x3/2*a5/3*c - [Grünbaumian] o3x5x5/3o3/2*a5/3*c - (contains "2gissid") o3x5o5/3x3/2*a5/3*c - o3o5x5/3x3/2*a5/3*c - gefradit thix x3x5x5/3o3/2*a5/3*c - hixtixhi x3x5o5/3x3/2*a5/3*c - [Grünbaumian] x3o5x5/3x3/2*a5/3*c - [Grünbaumian] o3x5x5/3x3/2*a5/3*c - x3x5x5/3x3/2*a5/3*c - [Grünbaumian] |
x3x5/4o5/3o3*a5/2*c - (contains gacid) x3o5/4x5/3o3*a5/2*c - [Grünbaumian] x3o5/4o5/3x3*a5/2*c - (contains gacid) o3x5/4x5/3o3*a5/2*c - [Grünbaumian] o3x5/4o5/3x3*a5/2*c - o3o5/4x5/3x3*a5/2*c - gefradit thix x3x5/4x5/3o3*a5/2*c - [Grünbaumian] x3x5/4o5/3x3*a5/2*c - x3o5/4x5/3x3*a5/2*c - [Grünbaumian] o3x5/4x5/3x3*a5/2*c - [Grünbaumian] x3x5/4x5/3x3*a5/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o5o5/3o3*a5/2*c (µ=617) | o3/2o5/4o5/2o3*a5/3*c (µ=1183) | o3o5/4o5/2o3/2*a5/2*c (µ=1337) | o3/2o5/4o5/3o3/2*a5/3*c (µ=2657) | |
quasiregulars |
x3/2o5o5/3o3*a5/2*c - (contains gacid) o3/2x5o5/3o3*a5/2*c - (contains cid) o3/2o5x5/3o3*a5/2*c - (contains "2gissid") o3/2o5o5/3x3*a5/2*c - (contains gacid) |
x3/2o5/4o5/2o3*a5/3*c - (contains gacid) o3/2x5/4o5/2o3*a5/3*c - (contains cid) o3/2o5/4x5/2o3*a5/3*c - (contains "2gissid") o3/2o5/4o5/2x3*a5/3*c - (contains gacid) |
x3o5/4o5/2o3/2*a5/2*c - (contains gacid) o3x5/4o5/2o3/2*a5/2*c - (contains cid) o3o5/4x5/2o3/2*a5/2*c - (contains "2gissid") o3o5/4o5/2x3/2*a5/2*c - (contains gacid) |
x3/2o5/4o5/3o3/2*a5/3*c - (contains gacid) o3/2x5/4o5/3o3/2*a5/3*c - (contains cid) o3/2o5/4x5/3o3/2*a5/3*c - (contains "2gissid") o3/2o5/4o5/3x3/2*a5/3*c - (contains gacid) |
other Wythoffians |
x3/2x5o5/3o3*a5/2*c - [Grünbaumian] x3/2o5x5/3o3*a5/2*c - [Grünbaumian] x3/2o5o5/3x3*a5/2*c - (contains gacid) o3/2x5x5/3o3*a5/2*c - (contains "2gissid") o3/2x5o5/3x3*a5/2*c - o3/2o5x5/3x3*a5/2*c - gefradit thix x3/2x5x5/3o3*a5/2*c - [Grünbaumian] x3/2x5o5/3x3*a5/2*c - [Grünbaumian] x3/2o5x5/3x3*a5/2*c - [Grünbaumian] o3/2x5x5/3x3*a5/2*c - x3/2x5x5/3x3*a5/2*c - [Grünbaumian] |
x3/2x5/4o5/2o3*a5/3*c - [Grünbaumian] x3/2o5/4x5/2o3*a5/3*c - affixthi x3/2o5/4o5/2x3*a5/3*c - (contains gacid) o3/2x5/4x5/2o3*a5/3*c - [Grünbaumian] o3/2x5/4o5/2x3*a5/3*c - o3/2o5/4x5/2x3*a5/3*c - [Grünbaumian] x3/2x5/4x5/2o3*a5/3*c - [Grünbaumian] x3/2x5/4o5/2x3*a5/3*c - [Grünbaumian] x3/2o5/4x5/2x3*a5/3*c - [Grünbaumian] o3/2x5/4x5/2x3*a5/3*c - [Grünbaumian] x3/2x5/4x5/2x3*a5/3*c - [Grünbaumian] |
x3x5/4o5/2o3/2*a5/2*c - (contains gacid) x3o5/4x5/2o3/2*a5/2*c - [Grünbaumian] x3o5/4o5/2x3/2*a5/2*c - [Grünbaumian] o3x5/4x5/2o3/2*a5/2*c - [Grünbaumian] o3x5/4o5/2x3/2*a5/2*c - o3o5/4x5/2x3/2*a5/2*c - [Grünbaumian] x3x5/4x5/2o3/2*a5/2*c - [Grünbaumian] x3x5/4o5/2x3/2*a5/2*c - [Grünbaumian] x3o5/4x5/2x3/2*a5/2*c - [Grünbaumian] o3x5/4x5/2x3/2*a5/2*c - [Grünbaumian] x3x5/4x5/2x3/2*a5/2*c - [Grünbaumian] |
x3/2x5/4o5/3o3/2*a5/3*c - [Grünbaumian] x3/2o5/4x5/3o3/2*a5/3*c - affixthi x3/2o5/4o5/3x3/2*a5/3*c - [Grünbaumian] o3/2x5/4x5/3o3/2*a5/3*c - [Grünbaumian] o3/2x5/4o5/3x3/2*a5/3*c - o3/2o5/4x5/3x3/2*a5/3*c - gefradit thix x3/2x5/4x5/3o3/2*a5/3*c - [Grünbaumian] x3/2x5/4o5/3x3/2*a5/3*c - [Grünbaumian] x3/2o5/4x5/3x3/2*a5/3*c - [Grünbaumian] o3/2x5/4x5/3x3/2*a5/3*c - [Grünbaumian] x3/2x5/4x5/3x3/2*a5/3*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3o5o3o5*a5/4*c (µ=22) | o3o5/4o3/2o5*a5*c (µ=98) | o3/2o5o3/2o5*a5*c (µ=142) | |
quasiregulars |
x3o5o3o5*a5/4*c - (contains "2doe") o3x5o3o5*a5/4*c - (contains cid) |
x3o5/4o3/2o5*a5*c - (contains "2doe") o3x5/4o3/2o5*a5*c - (contains cid) o3o5/4x3/2o5*a5*c - (contains "2doe") o3o5/4o3/2x5*a5*c - (contains cid) |
x3/2o5o3/2o5*a5*c - (contains "2doe") o3/2x5o3/2o5*a5*c - (contains cid) |
other Wythoffians |
x3x5o3o5*a5/4*c - (contains "2doe") x3o5x3o5*a5/4*c - [Grünbaumian] x3o5o3x5*a5/4*c - (contains cid) o3x5o3x5*a5/4*c - x3x5x3o5*a5/4*c - [Grünbaumian] x3x5o3x5*a5/4*c - x3x5x3x5*a5/4*c - [Grünbaumian] |
x3x5/4o3/2o5*a5*c - (contains "2doe") x3o5/4x3/2o5*a5*c - 2sadtifady x3o5/4o3/2x5*a5*c - (contains cid) o3x5/4x3/2o5*a5*c - [Grünbaumian] o3x5/4o3/2x5*a5*c - o3o5/4x3/2x5*a5*c - [Grünbaumian] x3x5/4x3/2o5*a5*c - [Grünbaumian] x3x5/4o3/2x5*a5*c - x3o5/4x3/2x5*a5*c - [Grünbaumian] o3x5/4x3/2x5*a5*c - [Grünbaumian] x3x5/4x3/2x5*a5*c - [Grünbaumian] |
x3/2x5o3/2o5*a5*c - [Grünbaumian] x3/2o5x3/2o5*a5*c - 2sadtifady x3/2o5o3/2x5*a5*c - (contains cid) o3/2x5o3/2x5*a5*c - x3/2x5x3/2o5*a5*c - [Grünbaumian] x3/2x5o3/2x5*a5*c - [Grünbaumian] x3/2x5x3/2x5*a5*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o5/4o3o5/4*a5*c (µ=1102) | o3o5o3/2o5/4*a5/4*c (µ=1178) | o3/2o5/4o3/2o5/4*a5/4*c (µ=3382) | |
quasiregulars |
x3o5/4o3o5/4*a5*c - (contains "2doe") o3x5/4o3o5/4*a5*c - (contains cid) |
x3o5o3/2o5/4*a5/4*c - (contains "2doe") o3x5o3/2o5/4*a5/4*c - (contains cid) o3o5x3/2o5/4*a5/4*c - (contains "2doe") o3o5o3/2x5/4*a5/4*c - (contains cid) |
x3/2o5/4o3/2o5/4*a5/4*c - (contains "2doe") o3/2x5/4o3/2o5/4*a5/4*c - (contains cid) |
other Wythoffians |
x3x5/4o3o5/4*a5*c - (contains "2doe") x3o5/4x3o5/4*a5*c - 2sadtifady x3o5/4o3x5/4*a5*c - [Grünbaumian] o3x5/4o3x5/4*a5*c - x3x5/4x3o5/4*a5*c - [Grünbaumian] x3x5/4o3x5/4*a5*c - [Grünbaumian] x3x5/4x3x5/4*a5*c - [Grünbaumian] |
x3x5o3/2o5/4*a5/4*c - (contains "2doe") x3o5x3/2o5/4*a5/4*c - [Grünbaumian] x3o5o3/2x5/4*a5/4*c - [Grünbaumian] o3x5x3/2o5/4*a5/4*c - (contains cid) o3x5o3/2x5/4*a5/4*c - o3o5x3/2x5/4*a5/4*c - [Grünbaumian] x3x5x3/2o5/4*a5/4*c - [Grünbaumian] x3x5o3/2x5/4*a5/4*c - [Grünbaumian] x3o5x3/2x5/4*a5/4*c - [Grünbaumian] o3x5x3/2x5/4*a5/4*c - [Grünbaumian] x3x5x3/2x5/4*a5/4*c - [Grünbaumian] |
x3/2x5/4o3/2o5/4*a5/4*c - [Grünbaumian] x3/2o5/4x3/2o5/4*a5/4*c - [Grünbaumian] x3/2o5/4o3/2x5/4*a5/4*c - [Grünbaumian] o3/2x5/4o3/2x5/4*a5/4*c - x3/2x5/4x3/2o5/4*a5/4*c - [Grünbaumian] x3/2x5/4o3/2x5/4*a5/4*c - [Grünbaumian] x3/2x5/4x3/2x5/4*a5/4*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o5/2o3o5/2*a5/3*c (µ=238) | o3o5/3o3o5/3*a5/2*c (µ=598) | o3o5/3o3/2o5/2*a5/2*c (µ=602) | |
quasiregulars |
x3o5/2o3o5/2*a5/3*c - (contains "2gissid") o3x5/2o3o5/2*a5/3*c - (contains gacid) |
x3o5/3o3o5/3*a5/2*c - (contains "2gissid") o3x5/3o3o5/3*a5/2*c - (contains gacid) |
x3o5/3o3/2o5/2*a5/2*c - (contains "2gissid") o3x5/3o3/2o5/2*a5/2*c - (contains gacid) o3o5/3x3/2o5/2*a5/2*c - (contains "2gissid") o3o5/3o3/2x5/2*a5/2*c - (contains gacid) |
other Wythoffians |
x3x5/2o3o5/2*a5/3*c - (contains "2gissid") x3o5/2x3o5/2*a5/3*c - 2gadtifady x3o5/2o3x5/2*a5/3*c - [Grünbaumian] o3x5/2o3x5/2*a5/3*c - x3x5/2x3o5/2*a5/3*c - [Grünbaumian] x3x5/2o3x5/2*a5/3*c - [Grünbaumian] x3x5/2x3x5/2*a5/3*c - [Grünbaumian] |
x3x5/3o3o5/3*a5/2*c - (contains "2gissid") x3o5/3x3o5/3*a5/2*c - [Grünbaumian] x3o5/3o3x5/3*a5/2*c - (contains gacid) o3x5/3o3x5/3*a5/2*c - x3x5/3x3o5/3*a5/2*c - [Grünbaumian] x3x5/3o3x5/3*a5/2*c - x3x5/3x3x5/3*a5/2*c - [Grünbaumian] |
x3x5/3o3/2o5/2*a5/2*c - (contains "2gissid") x3o5/3x3/2o5/2*a5/2*c - [Grünbaumian] x3o5/3o3/2x5/2*a5/2*c - [Grünbaumian] o3x5/3x3/2o5/2*a5/2*c - (contains gacid) o3x5/3o3/2x5/2*a5/2*c - o3o5/3x3/2x5/2*a5/2*c - [Grünbaumian] x3x5/3x3/2o5/2*a5/2*c - [Grünbaumian] x3x5/3o3/2x5/2*a5/2*c - [Grünbaumian] x3o5/3x3/2x5/2*a5/2*c - [Grünbaumian] o3x5/3x3/2x5/2*a5/2*c - [Grünbaumian] x3x5/3x3/2x5/2*a5/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o5/2o3/2o5/3*a5/3*c (µ=962) | o3/2o5/2o3/2o5/2*a5/2*c (µ=1078) | o3/2o5/3o3/2o5/3*a5/3*c (µ=2158) | |
quasiregulars |
x3o5/2o3/2o5/3*a5/3*c - (contains "2gissid") o3x5/2o3/2o5/3*a5/3*c - (contains gacid) o3o5/2x3/2o5/3*a5/3*c - (contains "2gissid") o3o5/2o3/2x5/3*a5/3*c - (contains gacid) |
x3/2o5/2o3/2o5/2*a5/2*c - (contains "2gissid") o3/2x5/2o3/2o5/2*a5/2*c - (contains gacid) |
x3/2o5/3o3/2o5/3*a5/3*c - (contains "2gissid") o3/2x5/3o3/2o5/3*a5/3*c - (contains gacid) |
other Wythoffians |
x3x5/2o3/2o5/3*a5/3*c - (contains "2gissid") x3o5/2x3/2o5/3*a5/3*c - 2gadtifady x3o5/2o3/2x5/3*a5/3*c - (contains gacid) o3x5/2x3/2o5/3*a5/3*c - [Grünbaumian] o3x5/2o3/2x5/3*a5/3*c - o3o5/2x3/2x5/3*a5/3*c - [Grünbaumian] x3x5/2x3/2o5/3*a5/3*c - [Grünbaumian] x3x5/2o3/2x5/3*a5/3*c - x3o5/2x3/2x5/3*a5/3*c - [Grünbaumian] o3x5/2x3/2x5/3*a5/3*c - [Grünbaumian] x3x5/2x3/2x5/3*a5/3*c - [Grünbaumian] |
x3/2x5/2o3/2o5/2*a5/2*c - [Grünbaumian] x3/2o5/2x3/2o5/2*a5/2*c - [Grünbaumian] x3/2o5/2o3/2x5/2*a5/2*c - [Grünbaumian] o3/2x5/2o3/2x5/2*a5/2*c - x3/2x5/2x3/2o5/2*a5/2*c - [Grünbaumian] x3/2x5/2o3/2x5/2*a5/2*c - [Grünbaumian] x3/2x5/2x3/2x5/2*a5/2*c - [Grünbaumian] |
x3/2x5/3o3/2o5/3*a5/3*c - [Grünbaumian] x3/2o5/3x3/2o5/3*a5/3*c - 2gadtifady x3/2o5/3o3/2x5/3*a5/3*c - (contains gacid) o3/2x5/3o3/2x5/3*a5/3*c - x3/2x5/3x3/2o5/3*a5/3*c - [Grünbaumian] x3/2x5/3o3/2x5/3*a5/3*c - [Grünbaumian] x3/2x5/3x3/2x5/3*a5/3*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o5/2o5o5*a5/4*c (µ=38) | o3o5/3o5/4o5*a5*c (µ=82) | o3/2o5/2o5o5/4*a5*c (µ=322) | o3o5/3o5o5/4*a5*c (µ=398) | |
quasiregulars |
x3o5/2o5o5*a5/4*c - (contains "2gad") o3x5/2o5o5*a5/4*c - (contains gacid) o3o5/2x5o5*a5/4*c - (contains "2gad") o3o5/2o5x5*a5/4*c - (contains "2gad") |
x3o5/3o5/4o5*a5*c - (contains "2gad") o3x5/3o5/4o5*a5*c - (contains gacid) o3o5/3x5/4o5*a5*c - (contains "2gad") o3o5/3o5/4x5*a5*c - (contains "2gad") |
x3/2o5/2o5o5/4*a5*c - (contains "2gad") o3/2x5/2o5o5/4*a5*c - (contains gacid) o3/2o5/2x5o5/4*a5*c - (contains "2gad") o3/2o5/2o5x5/4*a5*c - (contains "2gad") |
x3o5/3o5o5/4*a5*c - (contains "2gad") o3x5/3o5o5/4*a5*c - (contains gacid) o3o5/3x5o5/4*a5*c - (contains "2gad") o3o5/3o5x5/4*a5*c - (contains "2gad") |
other Wythoffians |
x3x5/2o5o5*a5/4*c - (contains "2gad") x3o5/2x5o5*a5/4*c - [Grünbaumian] x3o5/2o5x5*a5/4*c - (contains gacid) o3x5/2x5o5*a5/4*c - [Grünbaumian] o3x5/2o5x5*a5/4*c - o3o5/2x5x5*a5/4*c - (contains "2sidhid") x3x5/2x5o5*a5/4*c - [Grünbaumian] x3x5/2o5x5*a5/4*c - x3o5/2x5x5*a5/4*c - [Grünbaumian] o3x5/2x5x5*a5/4*c - [Grünbaumian] x3x5/2x5x5*a5/4*c - [Grünbaumian] |
x3x5/3o5/4o5*a5*c - (contains "2gad") x3o5/3x5/4o5*a5*c - (contains "2sidhid") x3o5/3o5/4x5*a5*c - (contains gacid) o3x5/3x5/4o5*a5*c - (contains "2gad") o3x5/3o5/4x5*a5*c - o3o5/3x5/4x5*a5*c - [Grünbaumian] x3x5/3x5/4o5*a5*c - (contains "2sidhid") x3x5/3o5/4x5*a5*c - x3o5/3x5/4x5*a5*c - [Grünbaumian] o3x5/3x5/4x5*a5*c - [Grünbaumian] x3x5/3x5/4x5*a5*c - [Grünbaumian] |
x3/2x5/2o5o5/4*a5*c - [Grünbaumian] x3/2o5/2x5o5/4*a5*c - (contains "2sidhid") x3/2o5/2o5x5/4*a5*c - [Grünbaumian] o3/2x5/2x5o5/4*a5*c - [Grünbaumian] o3/2x5/2o5x5/4*a5*c - o3/2o5/2x5x5/4*a5*c - (contains "2sidhid") x3/2x5/2x5o5/4*a5*c - [Grünbaumian] x3/2x5/2o5x5/4*a5*c - [Grünbaumian] x3/2o5/2x5x5/4*a5*c - [Grünbaumian] o3/2x5/2x5x5/4*a5*c - [Grünbaumian] x3/2x5/2x5x5/4*a5*c - [Grünbaumian] |
x3x5/3o5o5/4*a5*c - (contains "2gad") x3o5/3x5o5/4*a5*c - (contains "2sidhid") x3o5/3o5x5/4*a5*c - [Grünbaumian] o3x5/3x5o5/4*a5*c - (contains "2gad") o3x5/3o5x5/4*a5*c - o3o5/3x5x5/4*a5*c - (contains "2sidhid") x3x5/3x5o5/4*a5*c - (contains "2sidhid") x3x5/3o5x5/4*a5*c - [Grünbaumian] x3o5/3x5x5/4*a5*c - [Grünbaumian] o3x5/3x5x5/4*a5*c - x3x5/3x5x5/4*a5*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o5/2o5/4o5*a5*c (µ=638) | o3/2o5/3o5o5*a5/4*c (µ=682) | o3o5/2o5/4o5/4*a5/4*c (µ=1882) | o3/2o5/3o5/4o5/4*a5/4*c (µ=3158) | |
quasiregulars |
x3/2o5/2o5/4o5*a5*c - (contains "2gad") o3/2x5/2o5/4o5*a5*c - (contains gacid) o3/2o5/2x5/4o5*a5*c - (contains "2gad") o3/2o5/2o5/4x5*a5*c - (contains "2gad") |
x3/2o5/3o5o5*a5/4*c - (contains "2gad") o3/2x5/3o5o5*a5/4*c - (contains gacid) o3/2o5/3x5o5*a5/4*c - (contains "2gad") o3/2o5/3o5x5*a5/4*c - (contains "2gad") |
x3o5/2o5/4o5/4*a5/4*c - (contains "2gad") o3x5/2o5/4o5/4*a5/4*c - (contains gacid) o3o5/2x5/4o5/4*a5/4*c - (contains "2gad") o3o5/2o5/4x5/4*a5/4*c - (contains "2gad") |
x3/2o5/3o5/4o5/4*a5/4*c - (contains "2gad") o3/2x5/3o5/4o5/4*a5/4*c - (contains gacid) o3/2o5/3x5/4o5/4*a5/4*c - (contains "2gad") o3/2o5/3o5/4x5/4*a5/4*c - (contains "2gad") |
other Wythoffians |
x3/2x5/2o5/4o5*a5*c - [Grünbaumian] x3/2o5/2x5/4o5*a5*c - (contains "2sidhid") x3/2o5/2o5/4x5*a5*c - (contains gacid) o3/2x5/2x5/4o5*a5*c - [Grünbaumian] o3/2x5/2o5/4x5*a5*c - o3/2o5/2x5/4x5*a5*c - [Grünbaumian] x3/2x5/2x5/4o5*a5*c - [Grünbaumian] x3/2x5/2o5/4x5*a5*c - [Grünbaumian] x3/2o5/2x5/4x5*a5*c - [Grünbaumian] o3/2x5/2x5/4x5*a5*c - [Grünbaumian] x3/2x5/2x5/4x5*a5*c - [Grünbaumian] |
x3/2x5/3o5o5*a5/4*c - [Grünbaumian] x3/2o5/3x5o5*a5/4*c - [Grünbaumian] x3/2o5/3o5x5*a5/4*c - (contains gacid) o3/2x5/3x5o5*a5/4*c - (contains "2gad") o3/2x5/3o5x5*a5/4*c - o3/2o5/3x5x5*a5/4*c - (contains "2sidhid") x3/2x5/3x5o5*a5/4*c - [Grünbaumian] x3/2x5/3o5x5*a5/4*c - [Grünbaumian] x3/2o5/3x5x5*a5/4*c - [Grünbaumian] o3/2x5/3x5x5*a5/4*c - x3/2x5/3x5x5*a5/4*c - [Grünbaumian] |
x3x5/2o5/4o5/4*a5/4*c - (contains "2gad") x3o5/2x5/4o5/4*a5/4*c - [Grünbaumian] x3o5/2o5/4x5/4*a5/4*c - [Grünbaumian] o3x5/2x5/4o5/4*a5/4*c - [Grünbaumian] o3x5/2o5/4x5/4*a5/4*c - o3o5/2x5/4x5/4*a5/4*c - [Grünbaumian] x3x5/2x5/4o5/4*a5/4*c - [Grünbaumian] x3x5/2o5/4x5/4*a5/4*c - [Grünbaumian] x3o5/2x5/4x5/4*a5/4*c - [Grünbaumian] o3x5/2x5/4x5/4*a5/4*c - [Grünbaumian] x3x5/2x5/4x5/4*a5/4*c - [Grünbaumian] |
x3/2x5/3o5/4o5/4*a5/4*c - [Grünbaumian] x3/2o5/3x5/4o5/4*a5/4*c - [Grünbaumian] x3/2o5/3o5/4x5/4*a5/4*c - [Grünbaumian] o3/2x5/3x5/4o5/4*a5/4*c - (contains "2gad") o3/2x5/3o5/4x5/4*a5/4*c - o3/2o5/3x5/4x5/4*a5/4*c - [Grünbaumian] x3/2x5/3x5/4o5/4*a5/4*c - [Grünbaumian] x3/2x5/3o5/4x5/4*a5/4*c - [Grünbaumian] x3/2o5/3x5/4x5/4*a5/4*c - [Grünbaumian] o3/2x5/3x5/4x5/4*a5/4*c - [Grünbaumian] x3/2x5/3x5/4x5/4*a5/4*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o5o5/2o5/2*a5/2*c (µ=178) | o3o5o5/2o5/3*a5/3*c (µ=182) | o3o5o5/3o5/2*a5/3*c (µ=298) | o3o5/4o5/2o5/2*a5/2*c (µ=542) | |
quasiregulars |
x3/2o5o5/2o5/2*a5/2*c - (contains "2sissid") o3/2x5o5/2o5/2*a5/2*c - (contains cid) o3/2o5x5/2o5/2*a5/2*c - (contains "2sissid") o3/2o5o5/2x5/2*a5/2*c - (contains "2sissid") |
x3o5o5/2o5/3*a5/3*c - (contains "2sissid") o3x5o5/2o5/3*a5/3*c - (contains cid) o3o5x5/2o5/3*a5/3*c - (contains "2sissid") o3o5o5/2x5/3*a5/3*c - (contains "2sissid") |
x3o5o5/3o5/2*a5/3*c - (contains "2sissid") o3x5o5/3o5/2*a5/3*c - (contains cid) o3o5x5/3o5/2*a5/3*c - (contains "2sissid") o3o5o5/3x5/2*a5/3*c - (contains "2sissid") |
x3o5/4o5/2o5/2*a5/2*c - (contains "2sissid") o3x5/4o5/2o5/2*a5/2*c - (contains cid) o3o5/4x5/2o5/2*a5/2*c - (contains "2sissid") o3o5/4o5/2x5/2*a5/2*c - (contains "2sissid") |
other Wythoffians |
x3/2x5o5/2o5/2*a5/2*c - [Grünbaumian] x3/2o5x5/2o5/2*a5/2*c - [Grünbaumian] x3/2o5o5/2x5/2*a5/2*c - [Grünbaumian] o3/2x5x5/2o5/2*a5/2*c - (contains "2sissid") o3/2x5o5/2x5/2*a5/2*c - o3/2o5x5/2x5/2*a5/2*c - [Grünbaumian] x3/2x5x5/2o5/2*a5/2*c - [Grünbaumian] x3/2x5o5/2x5/2*a5/2*c - [Grünbaumian] x3/2o5x5/2x5/2*a5/2*c - [Grünbaumian] o3/2x5x5/2x5/2*a5/2*c - [Grünbaumian] x3/2x5x5/2x5/2*a5/2*c - [Grünbaumian] |
x3x5o5/2o5/3*a5/3*c - (contains "2sissid") x3o5x5/2o5/3*a5/3*c - (contains "2gidhid") x3o5o5/2x5/3*a5/3*c - (contains "2gidhid") o3x5x5/2o5/3*a5/3*c - (contains "2sissid") o3x5o5/2x5/3*a5/3*c - o3o5x5/2x5/3*a5/3*c - [Grünbaumian] x3x5x5/2o5/3*a5/3*c - (contains "2gidhid") x3x5o5/2x5/3*a5/3*c - x3o5x5/2x5/3*a5/3*c - [Grünbaumian] o3x5x5/2x5/3*a5/3*c - [Grünbaumian] x3x5x5/2x5/3*a5/3*c - [Grünbaumian] |
x3x5o5/3o5/2*a5/3*c - (contains "2sissid") x3o5x5/3o5/2*a5/3*c - (contains "2gidhid") x3o5o5/3x5/2*a5/3*c - [Grünbaumian] o3x5x5/3o5/2*a5/3*c - (contains "2sissid") o3x5o5/3x5/2*a5/3*c - o3o5x5/3x5/2*a5/3*c - (contains "2gidhid") x3x5x5/3o5/2*a5/3*c - (contains "2gidhid") x3x5o5/3x5/2*a5/3*c - [Grünbaumian] x3o5x5/3x5/2*a5/3*c - [Grünbaumian] o3x5x5/3x5/2*a5/3*c - x3x5x5/3x5/2*a5/3*c - [Grünbaumian] |
x3x5/4o5/2o5/2*a5/2*c - (contains "2sissid") x3o5/4x5/2o5/2*a5/2*c - [Grünbaumian] x3o5/4o5/2x5/2*a5/2*c - [Grünbaumian] o3x5/4x5/2o5/2*a5/2*c - [Grünbaumian] o3x5/4o5/2x5/2*a5/2*c - o3o5/4x5/2x5/2*a5/2*c - [Grünbaumian] x3x5/4x5/2o5/2*a5/2*c - [Grünbaumian] x3x5/4o5/2x5/2*a5/2*c - [Grünbaumian] x3o5/4x5/2x5/2*a5/2*c - [Grünbaumian] o3x5/4x5/2x5/2*a5/2*c - [Grünbaumian] x3x5/4x5/2x5/2*a5/2*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
o3/2o5o5/3o5/3*a5/2*c (µ=782) | o3o5/4o5/3o5/3*a5/2*c (µ=1378) | o3/2o5/4o5/3o5/2*a5/3*c (µ=1862) | o3/2o5/4o5/2o5/3*a5/3*c (µ=1978) | |
quasiregulars |
x3/2o5o5/3o5/3*a5/2*c - (contains "2sissid") o3/2x5o5/3o5/3*a5/2*c - (contains cid) o3/2o5x5/3o5/3*a5/2*c - (contains "2sissid") o3/2o5o5/3x5/3*a5/2*c - (contains "2sissid") |
x3o5/4o5/3o5/3*a5/2*c - (contains "2sissid") o3x5/4o5/3o5/3*a5/2*c - (contains cid) o3o5/4x5/3o5/3*a5/2*c - (contains "2sissid") o3o5/4o5/3x5/3*a5/2*c - (contains "2sissid") |
x3/2o5/4o5/3o5/2*a5/3*c - (contains "2sissid") o3/2x5/4o5/3o5/2*a5/3*c - (contains cid) o3/2o5/4x5/3o5/2*a5/3*c - (contains "2sissid") o3/2o5/4o5/3x5/2*a5/3*c - (contains "2sissid") |
x3/2o5/4o5/2o5/3*a5/3*c - (contains "2sissid") o3/2x5/4o5/2o5/3*a5/3*c - (contains cid) o3/2o5/4x5/2o5/3*a5/3*c - (contains "2sissid") o3/2o5/4o5/2x5/3*a5/3*c - (contains "2sissid") |
other Wythoffians |
x3/2x5o5/3o5/3*a5/2*c - [Grünbaumian] x3/2o5x5/3o5/3*a5/2*c - [Grünbaumian] x3/2o5o5/3x5/3*a5/2*c - (contains "2gidhid") o3/2x5x5/3o5/3*a5/2*c - (contains "2sissid") o3/2x5o5/3x5/3*a5/2*c - o3/2o5x5/3x5/3*a5/2*c - (contains "2gidhid") x3/2x5x5/3o5/3*a5/2*c - [Grünbaumian] x3/2x5o5/3x5/3*a5/2*c - [Grünbaumian] x3/2o5x5/3x5/3*a5/2*c - [Grünbaumian] o3/2x5x5/3x5/3*a5/2*c - x3/2x5x5/3x5/3*a5/2*c - [Grünbaumian] |
x3x5/4o5/3o5/3*a5/2*c - (contains "2sissid") x3o5/4x5/3o5/3*a5/2*c - [Grünbaumian] x3o5/4o5/3x5/3*a5/2*c - (contains "2gidhid") o3x5/4x5/3o5/3*a5/2*c - [Grünbaumian] o3x5/4o5/3x5/3*a5/2*c - o3o5/4x5/3x5/3*a5/2*c - (contains "2gidhid") x3x5/4x5/3o5/3*a5/2*c - [Grünbaumian] x3x5/4o5/3x5/3*a5/2*c - x3o5/4x5/3x5/3*a5/2*c - [Grünbaumian] o3x5/4x5/3x5/3*a5/2*c - [Grünbaumian] x3x5/4x5/3x5/3*a5/2*c - [Grünbaumian] |
x3/2x5/4o5/3o5/2*a5/3*c - [Grünbaumian] x3/2o5/4x5/3o5/2*a5/3*c - (contains "2gidhid") x3/2o5/4o5/3x5/2*a5/3*c - [Grünbaumian] o3/2x5/4x5/3o5/2*a5/3*c - [Grünbaumian] o3/2x5/4o5/3x5/2*a5/3*c - o3/2o5/4x5/3x5/2*a5/3*c - (contains "2gidhid") x3/2x5/4x5/3o5/2*a5/3*c - [Grünbaumian] x3/2x5/4o5/3x5/2*a5/3*c - [Grünbaumian] x3/2o5/4x5/3x5/2*a5/3*c - [Grünbaumian] o3/2x5/4x5/3x5/2*a5/3*c - [Grünbaumian] x3/2x5/4x5/3x5/2*a5/3*c - [Grünbaumian] |
x3/2x5/4o5/2o5/3*a5/3*c - [Grünbaumian] x3/2o5/4x5/2o5/3*a5/3*c - (contains "2gidhid") x3/2o5/4o5/2x5/3*a5/3*c - (contains "2gidhid") o3/2x5/4x5/2o5/3*a5/3*c - [Grünbaumian] o3/2x5/4o5/2x5/3*a5/3*c - o3/2o5/4x5/2x5/3*a5/3*c - [Grünbaumian] x3/2x5/4x5/2o5/3*a5/3*c - [Grünbaumian] x3/2x5/4o5/2x5/3*a5/3*c - [Grünbaumian] x3/2o5/4x5/2x5/3*a5/3*c - [Grünbaumian] o3/2x5/4x5/2x5/3*a5/3*c - [Grünbaumian] x3/2x5/4x5/2x5/3*a5/3*c - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
... |
simplical ones |
o-P-o-Q-o-R-o-S-*a-T-*c *b-U-*d = o / T \ P _o_ S /_Q R_\ o-----U-----o |
o3o3o3o3*a3/2*c *b3/2*d (µ=4) | o3o3o3/2o3/2*a3/2*c *b3*d (µ=6) | o3/2o3/2o3/2o3/2*a3/2*c *b3/2*d (µ=24) | |
quasiregulars |
x3o3o3o3*a3/2*c *b3/2*d - (contains "2tet") |
x3o3o3/2o3/2*a3/2*c *b3*d - (contains "2tet") o3x3o3/2o3/2*a3/2*c *b3*d - (contains "2tet") |
x3/2o3/2o3/2o3/2*a3/2*c *b3/2*d - (contains "2tet") |
other Wythoffians |
x3x3o3o3*a3/2*c *b3/2*d - (contains "2tet") x3o3x3o3*a3/2*c *b3/2*d - [Grünbaumian] x3x3x3o3*a3/2*c *b3/2*d - [Grünbaumian] x3x3x3x3*a3/2*c *b3/2*d - [Grünbaumian] |
x3x3o3/2o3/2*a3/2*c *b3*d - (contains "2tet") x3o3x3/2o3/2*a3/2*c *b3*d - [Grünbaumian] x3x3x3/2o3/2*a3/2*c *b3*d - [Grünbaumian] o3x3x3/2x3/2*a3/2*c *b3*d - [Grünbaumian] x3x3x3/2x3/2*a3/2*c *b3*d - [Grünbaumian] |
x3/2x3/2o3/2o3/2*a3/2*c *b3/2*d - [Grünbaumian] x3/2x3/2x3/2o3/2*a3/2*c *b3/2*d - [Grünbaumian] x3/2x3/2x3/2x3/2*a3/2*c *b3/2*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3/2o3/2o4o4*a3/2*c *b4*d (µ=6) | o3o3o4o4*a3/2*c *b4/3*d (µ=10) | |
quasiregulars |
x3/2o3/2o4o4*a3/2*c *b4*d - (contains "2tet","oct+6{4}") o3/2o3/2o4x4*a3/2*c *b4*d - 6tes |
x3o3o4o4*a3/2*c *b4/3*d - (contains "2tet","oct+6{4}") o3x3o4o4*a3/2*c *b4/3*d - (contains "2tet","oct+6{4}") o3o3o4x4*a3/2*c *b4/3*d - 6tes |
other Wythoffians |
x3/2x3/2o4o4*a3/2*c *b4*d - [Grünbaumian] x3/2o3/2o4x4*a3/2*c *b4*d - x3/2x3/2x4o4*a3/2*c *b4*d - [Grünbaumian] x3/2x3/2o4x4*a3/2*c *b4*d - [Grünbaumian] x3/2x3/2x4x4*a3/2*c *b4*d - [Grünbaumian] |
x3x3o4o4*a3/2*c *b4/3*d - x3o3x4o4*a3/2*c *b4/3*d - [Grünbaumian] x3o3o4x4*a3/2*c *b4/3*d - o3x3o4x4*a3/2*c *b4/3*d - x3x3x4o4*a3/2*c *b4/3*d - [Grünbaumian] x3x3o4x4*a3/2*c *b4/3*d - kavahto x3o3x4x4*a3/2*c *b4/3*d - [Grünbaumian] x3x3x4x4*a3/2*c *b4/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
o3o3o4/3o4/3*a3/2*c *b4*d (µ=22) | o3/2o3/2o4/3o4/3*a3/2*c *b4/3*d (µ=90) | |
quasiregulars |
x3o3o4/3o4/3*a3/2*c *b4*d - (contains "2tet","oct+6{4}") o3x3o4/3o4/3*a3/2*c *b4*d - (contains "2tet","oct+6{4}") o3o3o4/3x4/3*a3/2*c *b4*d - 6tes |
x3/2o3/2o4/3o4/3*a3/2*c *b4/3*d - (contains "2tet","oct+6{4}") o3/2o3/2o4/3x4/3*a3/2*c *b4/3*d - 6tes |
other Wythoffians |
x3x3o4/3o4/3*a3/2*c *b4*d - x3o3x4/3o4/3*a3/2*c *b4*d - [Grünbaumian] x3o3o4/3x4/3*a3/2*c *b4*d - o3x3o4/3x4/3*a3/2*c *b4*d - x3x3x4/3o4/3*a3/2*c *b4*d - [Grünbaumian] x3x3o4/3x4/3*a3/2*c *b4*d - kavahto x3o3x4/3x4/3*a3/2*c *b4*d - [Grünbaumian] x3x3x4/3x4/3*a3/2*c *b4*d - [Grünbaumian] |
x3/2x3/2o4/3o4/3*a3/2*c *b4/3*d - [Grünbaumian] x3/2o3/2o4/3x4/3*a3/2*c *b4/3*d - x3/2x3/2x4/3o4/3*a3/2*c *b4/3*d - [Grünbaumian] x3/2x3/2o4/3x4/3*a3/2*c *b4/3*d - [Grünbaumian] x3/2x3/2x4/3x4/3*a3/2*c *b4/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
o4o4o4o4*a3/2*c *b3/2*d (µ=4) | o3o4o3/2o4/3*a4/3*c *b4*d (µ=44) | |
quasiregulars |
x4o4o4o4*a3/2*c *b3/2*d - 2ico+2gico |
x3o4o3/2o4/3*a4/3*c *b4*d - 2ico+2gico o3x4o3/2o4/3*a4/3*c *b4*d - 2ico+2gico o3o4x3/2o4/3*a4/3*c *b4*d - 2ico+2gico |
other Wythoffians |
x4x4o4o4*a3/2*c *b3/2*d - x4o4x4o4*a3/2*c *b3/2*d - [Grünbaumian] x4x4x4o4*a3/2*c *b3/2*d - [Grünbaumian] x4x4x4x4*a3/2*c *b3/2*d - [Grünbaumian] |
x3x4o3/2o4/3*a4/3*c *b4*d - x3o4x3/2o4/3*a4/3*c *b4*d - o3x4x3/2o4/3*a4/3*c *b4*d - o3o4x3/2x4/3*a4/3*c *b4*d - [Grünbaumian] x3x4x3/2o4/3*a4/3*c *b4*d - x3o4x3/2x4/3*a4/3*c *b4*d - [Grünbaumian] o3x4x3/2x4/3*a4/3*c *b4*d - [Grünbaumian] x3x4x3/2x4/3*a4/3*c *b4*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
o3o4o3o4*a4/3*c *c4/3*d (µ=52) | o3/2o4/3o3/2o4/3*a4/3*c *b4/3*d (µ=292) | |
quasiregulars |
x3o4o3o4*a4/3*c *b4/3*d - 2ico+2gico |
x3/2o4/3o3/2o4/3*a4/3*c *b4/3*d - 2ico+2gico |
other Wythoffians |
x3x4o3o4*a4/3*c *b4/3*d - x3o4x3o4*a4/3*c *b4/3*d - x3o4o3x4*a4/3*c *b4/3*d - x3x4x3o4*a4/3*c *b4/3*d - x3x4x3x4*a4/3*c *b4/3*d - 2affic |
x3/2x4/3o3/2o4/3*a4/3*c *b4/3*d - [Grünbaumian] x3/2o4/3x3/2o4/3*a4/3*c *b4/3*d - x3/2x4/3x3/2o4/3*a4/3*c *b4/3*d - [Grünbaumian] x3/2x4/3x3/2x4/3*a4/3*c *b4/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
o3o3/2o3o3/2*a3*c *b5*d (µ=284) | o3o3o3/2o3/2*a3/2*c *b5*d (µ=436) | o3o3o3o3*a3/2*c *b5/4*d (µ=764) | |
quasiregulars |
x3o3/2o3o3/2*a3*c *b5*d - (contains "2tet") o3x3/2o3o3/2*a3*c *b5*d - (contains "2tet") |
x3o3o3/2o3/2*a3/2*c *b5*d - (contains "2tet") o3x3o3/2o3/2*a3/2*c *b5*d - (contains "2tet") o3o3o3/2x3/2*a3/2*c *b5*d - (contains "2tet") |
x3o3o3o3*a3/2*c *b5/4*d - (contains "2tet") o3x3o3o3*a3/2*c *b5/4*d - (contains "2tet") |
other Wythoffians |
x3x3/2o3o3/2*a3*c *b5*d - x3o3/2x3o3/2*a3*c *b5*d - x3o3/2o3x3/2*a3*c *b5*d - [Grünbaumian] o3x3/2o3x3/2*a3*c *b5*d - x3x3/2x3o3/2*a3*c *b5*d - [Grünbaumian] x3x3/2o3x3/2*a3*c *b5*d - [Grünbaumian] x3x3/2x3x3/2*a3*c *b5*d - [Grünbaumian] |
x3x3o3/2o3/2*a3/2*c *b5*d - x3o3x3/2o3/2*a3/2*c *b5*d - [Grünbaumian] x3o3o3/2x3/2*a3/2*c *b5*d - [Grünbaumian] o3x3o3/2x3/2*a3/2*c *b5*d - x3x3x3/2o3/2*a3/2*c *b5*d - [Grünbaumian] x3x3o3/2x3/2*a3/2*c *b5*d - [Grünbaumian] x3o3x3/2x3/2*a3/2*c *b5*d - [Grünbaumian] x3x3x3/2x3/2*a3/2*c *b5*d - [Grünbaumian] |
x3x3o3o3*a3/2*c *b5/4*d - x3o3x3o3*a3/2*c *b5/4*d - [Grünbaumian] o3x3o3x3*a3/2*c *b5/4*d - [Grünbaumian] x3x3x3o3*a3/2*c *b5/4*d - [Grünbaumian] x3x3o3x3*a3/2*c *b5/4*d - [Grünbaumian] x3x3x3x3*a3/2*c *b5/4*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3/2o3/2o3*a3*c *b5/4*d (µ=916) | o3/2o3/2o3/2o3/2*a3/2*c *b5/4*d (µ=3164) | ||
quasiregulars |
x3o3/2o3/2o3*a3*c *b5/4*d - (contains "2tet") o3x3/2o3/2o3*a3*c *b5/4*d - (contains "2tet") o3o3/2x3/2o3*a3*c *b5/4*d - (contains "2tet") |
x3/2o3/2o3/2o3/2*a3/2*c *b5/4*d - (contains "2tet") o3/2x3/2o3/2o3/2*a3/2*c *b5/4*d - (contains "2tet") | |
other Wythoffians |
x3x3/2o3/2o3*a3*c *b5/4*d - x3o3/2x3/2o3*a3*c *b5/4*d - o3x3/2x3/2o3*a3*c *b5/4*d - [Grünbaumian] o3x3/2o3/2x3*a3*c *b5/4*d - [Grünbaumian] x3x3/2x3/2o3*a3*c *b5/4*d - [Grünbaumian] x3x3/2o3/2x3*a3*c *b5/4*d - [Grünbaumian] o3x3/2x3/2x3*a3*c *b5/4*d - [Grünbaumian] x3x3/2x3/2x3*a3*c *b5/4*d - [Grünbaumian] |
x3/2x3/2o3/2o3/2*a3/2*c *b5/4*d - [Grünbaumian] x3/2o3/2x3/2o3/2*a3/2*c *b5/4*d - [Grünbaumian] o3/2x3/2o3/2x3/2*a3/2*c *b5/4*d - [Grünbaumian] x3/2x3/2x3/2o3/2*a3/2*c *b5/4*d - [Grünbaumian] x3/2x3/2o3/2x3/2*a3/2*c *b5/4*d - [Grünbaumian] x3/2x3/2x3/2x3/2*a3/2*c *b5/4*d - [Grünbaumian] | |
(partial) snubs and holosnubs |
... |
... |
o3o3o3o3*a3/2*c *b5/2*d (µ=4) | o3o3/2o3/2o3*a3*c *b5/2*d (µ=236) | o3o3/2o3o3/2*a3*c *b5/3*d (µ=964) | |
quasiregulars |
x3o3o3o3*a3/2*c *b5/2*d - (contains "2tet") o3x3o3o3*a3/2*c *b5/2*d - (contains "2tet") |
x3o3/2o3/2o3*a3*c *b5/2*d - (contains "2tet") o3x3/2o3/2o3*a3*c *b5/2*d - (contains "2tet") o3o3/2x3/2o3*a3*c *b5/2*d - (contains "2tet") |
x3o3/2o3o3/2*a3*c *b5/3*d - (contains "2tet") o3x3/2o3o3/2*a3*c *b5/3*d - (contains "2tet") |
other Wythoffians |
x3x3o3o3*a3/2*c *b5/2*d - x3o3x3o3*a3/2*c *b5/2*d - [Grünbaumian] o3x3o3x3*a3/2*c *b5/2*d - [Grünbaumian] x3x3x3o3*a3/2*c *b5/2*d - [Grünbaumian] x3x3o3x3*a3/2*c *b5/2*d - [Grünbaumian] x3x3x3x3*a3/2*c *b5/2*d - [Grünbaumian] |
x3x3/2o3/2o3*a3*c *b5/2*d - x3o3/2x3/2o3*a3*c *b5/2*d - o3x3/2x3/2o3*a3*c *b5/2*d - [Grünbaumian] o3x3/2o3/2x3*a3*c *b5/2*d - [Grünbaumian] x3x3/2x3/2o3*a3*c *b5/2*d - [Grünbaumian] x3x3/2o3/2x3*a3*c *b5/2*d - [Grünbaumian] o3x3/2x3/2x3*a3*c *b5/2*d - [Grünbaumian] x3x3/2x3/2x3*a3*c *b5/2*d - [Grünbaumian] |
x3x3/2o3o3/2*a3*c *b5/3*d - x3o3/2x3o3/2*a3*c *b5/3*d - x3o3/2o3x3/2*a3*c *b5/3*d - [Grünbaumian] o3x3/2o3x3/2*a3*c *b5/3*d - x3x3/2x3o3/2*a3*c *b5/3*d - [Grünbaumian] x3x3/2o3x3/2*a3*c *b5/3*d - [Grünbaumian] x3x3/2x3x3/2*a3*c *b5/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3o3/2o3/2*a3/2*c *b5/3*d (µ=1196) | o3/2o3/2o3/2o3/2*a3/2*c *b5/2*d (µ=2404) | ||
quasiregulars |
x3o3o3/2o3/2*a3/2*c *b5/3*d - (contains "2tet") o3x3o3/2o3/2*a3/2*c *b5/3*d - (contains "2tet") o3o3o3/2x3/2*a3/2*c *b5/3*d - (contains "2tet") |
x3/2o3/2o3/2o3/2*a3/2*c *b5/2*d - (contains "2tet") o3/2x3/2o3/2o3/2*a3/2*c *b5/2*d - (contains "2tet") | |
other Wythoffians |
x3x3o3/2o3/2*a3/2*c *b5/3*d - x3o3x3/2o3/2*a3/2*c *b5/3*d - [Grünbaumian] x3o3o3/2x3/2*a3/2*c *b5/3*d - [Grünbaumian] o3x3o3/2x3/2*a3/2*c *b5/3*d - x3x3x3/2o3/2*a3/2*c *b5/3*d - [Grünbaumian] x3x3o3/2x3/2*a3/2*c *b5/3*d - [Grünbaumian] x3o3x3/2x3/2*a3/2*c *b5/3*d - [Grünbaumian] x3x3x3/2x3/2*a3/2*c *b5/3*d - [Grünbaumian] |
x3/2x3/2o3/2o3/2*a3/2*c *b5/2*d - [Grünbaumian] x3/2o3/2x3/2o3/2*a3/2*c *b5/2*d - [Grünbaumian] o3/2x3/2o3/2x3/2*a3/2*c *b5/2*d - [Grünbaumian] x3/2x3/2x3/2o3/2*a3/2*c *b5/2*d - [Grünbaumian] x3/2x3/2o3/2x3/2*a3/2*c *b5/2*d - [Grünbaumian] x3/2x3/2x3/2x3/2*a3/2*c *b5/2*d - [Grünbaumian] | |
(partial) snubs and holosnubs |
... |
... |
o3/2o3o3/2o5*a5*c *b3*d (µ=78) | o3o3/2o3/2o5*a5*c *b3/2*d (µ=162) | o3o3o3o5*a5/4*c *b3/2*d (µ=558) | |
quasiregulars |
x3/2o3o3/2o5*a5*c *b3*d - (contains "2doe") o3/2x3o3/2o5*a5*c *b3*d - (contains "2tet") o3/2o3x3/2o5*a5*c *b3*d - (contains "2tet") |
x3o3/2o3/2o5*a5*c *b3/2*d - (contains "2doe") o3x3/2o3/2o5*a5*c *b3/2*d - (contains "2tet") o3o3/2x3/2o5*a5*c *b3/2*d - (contains "2tet") |
x3o3o3o5*a5/4*c *b3/2*d - (contains "2doe") o3x3o3o5*a5/4*c *b3/2*d - (contains "2tet") o3o3x3o5*a5/4*c *b3/2*d - (contains "2tet") o3o3o3x5*a5/4*c *b3/2*d - (contains "2tet") |
other Wythoffians |
x3/2x3o3/2o5*a5*c *b3*d - [Grünbaumian] x3/2o3x3/2o5*a5*c *b3*d - o3/2x3x3/2o5*a5*c *b3*d - o3/2o3x3/2x5*a5*c *b3*d - [Grünbaumian] x3/2x3x3/2o5*a5*c *b3*d - [Grünbaumian] x3/2o3x3/2x5*a5*c *b3*d - [Grünbaumian] o3/2x3x3/2x5*a5*c *b3*d - [Grünbaumian] x3/2x3x3/2x5*a5*c *b3*d - [Grünbaumian] |
x3x3/2o3/2o5*a5*c *b3/2*d - x3o3/2x3/2o5*a5*c *b3/2*d - o3x3/2x3/2o5*a5*c *b3/2*d - [Grünbaumian] o3o3/2x3/2x5*a5*c *b3/2*d - [Grünbaumian] x3x3/2x3/2o5*a5*c *b3/2*d - [Grünbaumian] x3o3/2x3/2x5*a5*c *b3/2*d - [Grünbaumian] o3x3/2x3/2x5*a5*c *b3/2*d - [Grünbaumian] x3x3/2x3/2x5*a5*c *b3/2*d - [Grünbaumian] |
x3x3o3o5*a5/4*c *b3/2*d - x3o3x3o5*a5/4*c *b3/2*d - [Grünbaumian] x3o3o3x5*a5/4*c *b3/2*d - o3x3x3o5*a5/4*c *b3/2*d - o3x3o3x5*a5/4*c *b3/2*d - [Grünbaumian] o3o3x3x5*a5/4*c *b3/2*d - x3x3x3o5*a5/4*c *b3/2*d - [Grünbaumian] x3x3o3x5*a5/4*c *b3/2*d - [Grünbaumian] x3o3x3x5*a5/4*c *b3/2*d - [Grünbaumian] o3x3x3x5*a5/4*c *b3/2*d - [Grünbaumian] x3x3x3x5*a5/4*c *b3/2*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3/2o3/2o3o5*a5/4*c *b3*d (µ=642) | o3o3o3/2o5/4*a5/4*c *b3*d (µ=1122) | o3/2o3/2o3/2o5/4*a5/4*c *b3/2*d (µ=3438) | |
quasiregulars |
x3/2o3/2o3o5*a5/4*c *b3*d - (contains "2doe") o3/2x3/2o3o5*a5/4*c *b3*d - (contains "2tet") o3/2o3/2x3o5*a5/4*c *b3*d - (contains "2tet") o3/2o3/2o3x5*a5/4*c *b3*d - (contains "2tet") |
x3o3o3/2o5/4*a5/4*c *b3*d - (contains "2doe") o3x3o3/2o5/4*a5/4*c *b3*d - (contains "2tet") o3o3x3/2o5/4*a5/4*c *b3*d - (contains "2tet") |
x3/2o3/2o3/2o5/4*a5/4*c *b3/2*d - (contains "2doe") o3/2x3/2o3/2o5/4*a5/4*c *b3/2*d - (contains "2tet") o3/2o3/2x3/2o5/4*a5/4*c *b3/2*d - (contains "2tet") |
other Wythoffians |
x3/2x3/2o3o5*a5/4*c *b3*d - [Grünbaumian] x3/2o3/2x3o5*a5/4*c *b3*d - [Grünbaumian] x3/2o3/2o3x5*a5/4*c *b3*d - o3/2x3/2x3o5*a5/4*c *b3*d - [Grünbaumian] o3/2x3/2o3x5*a5/4*c *b3*d - o3/2o3/2x3x5*a5/4*c *b3*d - x3/2x3/2x3o5*a5/4*c *b3*d - [Grünbaumian] x3/2x3/2o3x5*a5/4*c *b3*d - [Grünbaumian] x3/2o3/2x3x5*a5/4*c *b3*d - [Grünbaumian] o3/2x3/2x3x5*a5/4*c *b3*d - [Grünbaumian] x3/2x3/2x3x5*a5/4*c *b3*d - [Grünbaumian] |
x3x3o3/2o5/4*a5/4*c *b3*d - x3o3x3/2o5/4*a5/4*c *b3*d - [Grünbaumian] o3x3x3/2o5/4*a5/4*c *b3*d - o3o3x3/2x5/4*a5/4*c *b3*d - [Grünbaumian] x3x3x3/2o5/4*a5/4*c *b3*d - [Grünbaumian] x3o3x3/2x5/4*a5/4*c *b3*d - [Grünbaumian] x3x3x3/2x5/4*a5/4*c *b3*d - [Grünbaumian] |
x3/2x3/2o3/2o5/4*a5/4*c *b3/2*d - [Grünbaumian] x3/2o3/2x3/2o5/4*a5/4*c *b3/2*d - [Grünbaumian] o3/2x3/2x3/2o5/4*a5/4*c *b3/2*d - [Grünbaumian] o3/2o3/2x3/2x5/4*a5/4*c *b3/2*d - [Grünbaumian] x3/2x3/2x3/2o5/4*a5/4*c *b3/2*d - [Grünbaumian] x3/2o3/2x3/2x5/4*a5/4*c *b3/2*d - [Grünbaumian] o3/2x3/2x3/2x5/4*a5/4*c *b3/2*d - [Grünbaumian] x3/2x3/2x3/2x5/4*a5/4*c *b3/2*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3o3/2o5/2*a5/2*c *b3*d (µ=18) | o3o3o3o5/3*a5/2*c *b3/2*d (µ=222) | o3/2o3o3o5/2*a5/3*c *b3/2*d (µ=978) | |
quasiregulars |
x3o3o3/2o5/2*a5/2*c *b3*d - (contains "2gissid") o3x3o3/2o5/2*a5/2*c *b3*d - (contains "2tet") o3o3x3/2o5/2*a5/2*c *b3*d - (contains "2tet") |
x3o3o3o5/3*a5/2*c *b3/2*d - (contains "2gissid") o3x3o3o5/3*a5/2*c *b3/2*d - (contains "2tet") o3o3x3o5/3*a5/2*c *b3/2*d - (contains "2tet") o3o3o3x5/3*a5/2*c *b3/2*d - (contains "2tet") |
x3/2o3o3o5/2*a5/3*c *b3/2*d - (contains "2gissid") o3/2x3o3o5/2*a5/3*c *b3/2*d - (contains "2tet") o3/2o3x3o5/2*a5/3*c *b3/2*d - (contains "2tet") o3/2o3o3x5/2*a5/3*c *b3/2*d - (contains "2tet") |
other Wythoffians |
x3x3o3/2o5/2*a5/2*c *b3*d - x3o3x3/2o5/2*a5/2*c *b3*d - [Grünbaumian] o3x3x3/2o5/2*a5/2*c *b3*d - o3o3x3/2x5/2*a5/2*c *b3*d - [Grünbaumian] x3x3x3/2o5/2*a5/2*c *b3*d - [Grünbaumian] x3o3x3/2x5/2*a5/2*c *b3*d - [Grünbaumian] o3x3x3/2x5/2*a5/2*c *b3*d - [Grünbaumian] x3x3x3/2x5/2*a5/2*c *b3*d - [Grünbaumian] |
x3x3o3o5/3*a5/2*c *b3/2*d - x3o3x3o5/3*a5/2*c *b3/2*d - [Grünbaumian] x3o3o3x5/3*a5/2*c *b3/2*d - o3x3x3o5/3*a5/2*c *b3/2*d - o3x3o3x5/3*a5/2*c *b3/2*d - [Grünbaumian] o3o3x3x5/3*a5/2*c *b3/2*d - x3x3x3o5/3*a5/2*c *b3/2*d - [Grünbaumian] x3x3o3x5/3*a5/2*c *b3/2*d - [Grünbaumian] x3o3x3x5/3*a5/2*c *b3/2*d - [Grünbaumian] o3x3x3x5/3*a5/2*c *b3/2*d - [Grünbaumian] x3x3x3x5/3*a5/2*c *b3/2*d - [Grünbaumian] |
x3/2x3o3o5/2*a5/3*c *b3/2*d - [Grünbaumian] x3/2o3x3o5/2*a5/3*c *b3/2*d - x3/2o3o3x5/2*a5/3*c *b3/2*d - [Grünbaumian] o3/2x3x3o5/2*a5/3*c *b3/2*d - o3/2x3o3x5/2*a5/3*c *b3/2*d - [Grünbaumian] o3/2o3x3x5/2*a5/3*c *b3/2*d - x3/2x3x3o5/2*a5/3*c *b3/2*d - [Grünbaumian] x3/2x3o3x5/2*a5/3*c *b3/2*d - [Grünbaumian] x3/2o3x3x5/2*a5/3*c *b3/2*d - [Grünbaumian] o3/2x3x3x5/2*a5/3*c *b3/2*d - [Grünbaumian] x3/2x3x3x5/2*a5/3*c *b3/2*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3/2o3o3/2o5/3*a5/3*c *b3*d (µ=1182) | o3/2o3/2o3/2o5/2*a5/2*c *b3/2*d (µ=1662) | o3o3/2o3/2o5/3*a5/3*c *b3/2*d (µ=1938) | |
quasiregulars |
x3/2o3o3/2o5/3*a5/3*c *b3*d - (contains "2gissid") o3/2x3o3/2o5/3*a5/3*c *b3*d - (contains "2tet") o3/2o3x3/2o5/3*a5/3*c *b3*d - (contains "2tet") |
x3/2o3/2o3/2o5/2*a5/2*c *b3/2*d - (contains "2gissid") o3/2x3/2o3/2o5/2*a5/2*c *b3/2*d - (contains "2tet") o3/2o3/2x3/2o5/2*a5/2*c *b3/2*d - (contains "2tet") |
x3o3/2o3/2o5/3*a5/3*c *b3/2*d - (contains "2gissid") o3x3/2o3/2o5/3*a5/3*c *b3/2*d - (contains "2tet") o3o3/2x3/2o5/3*a5/3*c *b3/2*d - (contains "2tet") |
other Wythoffians |
x3/2x3o3/2o5/3*a5/3*c *b3*d - [Grünbaumian] x3/2o3x3/2o5/3*a5/3*c *b3*d - o3/2x3x3/2o5/3*a5/3*c *b3*d - o3/2o3x3/2x5/3*a5/3*c *b3*d - [Grünbaumian] x3/2x3x3/2o5/3*a5/3*c *b3*d - [Grünbaumian] x3/2o3x3/2x5/3*a5/3*c *b3*d - [Grünbaumian] o3/2x3x3/2x5/3*a5/3*c *b3*d - [Grünbaumian] x3/2x3x3/2x5/3*a5/3*c *b3*d - [Grünbaumian] |
x3/2x3/2o3/2o5/2*a5/2*c *b3/2*d - [Grünbaumian] x3/2o3/2x3/2o5/2*a5/2*c *b3/2*d - [Grünbaumian] o3/2x3/2x3/2o5/2*a5/2*c *b3/2*d - [Grünbaumian] o3/2o3/2x3/2x5/2*a5/2*c *b3/2*d - [Grünbaumian] x3/2x3/2x3/2o5/2*a5/2*c *b3/2*d - [Grünbaumian] x3/2o3/2x3/2x5/2*a5/2*c *b3/2*d - [Grünbaumian] o3/2x3/2x3/2x5/2*a5/2*c *b3/2*d - [Grünbaumian] x3/2x3/2x3/2x5/2*a5/2*c *b3/2*d - [Grünbaumian] |
x3x3/2o3/2o5/3*a5/3*c *b3/2*d - x3o3/2x3/2o5/3*a5/3*c *b3/2*d - o3x3/2x3/2o5/3*a5/3*c *b3/2*d - [Grünbaumian] o3o3/2x3/2x5/3*a5/3*c *b3/2*d - [Grünbaumian] x3x3/2x3/2o5/3*a5/3*c *b3/2*d - [Grünbaumian] x3o3/2x3/2x5/3*a5/3*c *b3/2*d - [Grünbaumian] o3x3/2x3/2x5/3*a5/3*c *b3/2*d - [Grünbaumian] x3x3/2x3/2x5/3*a5/3*c *b3/2*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3o3o3*a5/2*c *b5/4*d (µ=80) | o3o3o3/2o3/2*a5/2*c *b5*d (µ=160) | o3o3/2o3o3/2*a5/3*c *b5*d (µ=560) | |
quasiregulars |
x3o3o3o3*a5/2*c *b5/4*d - (contains "2gike") o3x3o3o3*a5/2*c *b5/4*d - (contains "2ike") |
x3o3o3/2o3/2*a5/2*c *b5*d - (contains "2gike") o3x3o3/2o3/2*a5/2*c *b5*d - (contains "2ike") o3o3o3/2x3/2*a5/2*c *b5*d - (contains "2ike") |
x3o3/2o3o3/2*a5/3*c *b5*d - (contains "2gike") o3x3/2o3o3/2*a5/3*c *b5*d - (contains "2ike") |
other Wythoffians |
x3x3o3o3*a5/2*c *b5/4*d - x3o3x3o3*a5/2*c *b5/4*d - [Grünbaumian] o3x3o3x3*a5/2*c *b5/4*d - [Grünbaumian] x3x3x3o3*a5/2*c *b5/4*d - [Grünbaumian] x3x3o3x3*a5/2*c *b5/4*d - [Grünbaumian] x3x3x3x3*a5/2*c *b5/4*d - [Grünbaumian] |
x3x3o3/2o3/2*a5/2*c *b5*d - x3o3x3/2o3/2*a5/2*c *b5*d - [Grünbaumian] x3o3o3/2x3/2*a5/2*c *b5*d - [Grünbaumian] o3x3o3/2x3/2*a5/2*c *b5*d - x3x3x3/2o3/2*a5/2*c *b5*d - [Grünbaumian] x3x3o3/2x3/2*a5/2*c *b5*d - [Grünbaumian] x3o3x3/2x3/2*a5/2*c *b5*d - [Grünbaumian] x3x3x3/2x3/2*a5/2*c *b5*d - [Grünbaumian] |
x3x3/2o3o3/2*a5/3*c *b5*d - x3o3/2x3o3/2*a5/3*c *b5*d - x3o3/2o3x3/2*a5/3*c *b5*d - [Grünbaumian] o3x3/2o3x3/2*a5/3*c *b5*d - x3x3/2x3o3/2*a5/3*c *b5*d - [Grünbaumian] x3x3/2o3x3/2*a5/3*c *b5*d - [Grünbaumian] x3x3/2x3x3/2*a5/3*c *b5*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3/2o3/2o3*a5/3*c *b5/4*d (µ=1600) | o3/2o3/2o3/2o3/2*a5/2*c *b5/4*d (µ=2480) | ||
quasiregulars |
x3o3/2o3/2o3*a5/3*c *b5/4*d - (contains "2gike") o3x3/2o3/2o3*a5/3*c *b5/4*d - (contains "2ike") o3o3/2x3/2o3*a5/3*c *b5/4*d - (contains "2gike") |
x3/2o3/2o3/2o3/2*a5/2*c *b5/4*d - (contains "2gike") o3/2x3/2o3/2o3/2*a5/2*c *b5/4*d - (contains "2ike") | |
other Wythoffians |
x3x3/2o3/2o3*a5/3*c *b5/4*d - x3o3/2x3/2o3*a5/3*c *b5/4*d - o3x3/2x3/2o3*a5/3*c *b5/4*d - [Grünbaumian] o3x3/2o3/2x3*a5/3*c *b5/4*d - [Grünbaumian] x3x3/2x3/2o3*a5/3*c *b5/4*d - [Grünbaumian] x3x3/2o3/2x3*a5/3*c *b5/4*d - [Grünbaumian] o3x3/2x3/2x3*a5/3*c *b5/4*d - [Grünbaumian] x3x3/2x3/2x3*a5/3*c *b5/4*d - [Grünbaumian] |
x3/2x3/2o3/2o3/2*a5/2*c *b5/4*d - [Grünbaumian] x3/2o3/2x3/2o3/2*a5/2*c *b5/4*d - [Grünbaumian] o3/2x3/2o3/2x3/2*a5/2*c *b5/4*d - [Grünbaumian] x3/2x3/2x3/2o3/2*a5/2*c *b5/4*d - [Grünbaumian] x3/2x3/2o3/2x3/2*a5/2*c *b5/4*d - [Grünbaumian] x3/2x3/2x3/2x3/2*a5/2*c *b5/4*d - [Grünbaumian] | |
(partial) snubs and holosnubs |
... |
... |
o3/2o3/2o5o5*a3/2*c *b5*d (µ=6) | o3o3o5o5*a3/2*c *b5/4*d (µ=234) | |
quasiregulars |
x3/2o3/2o5o5*a3/2*c *b5*d - (contains "2tet") o3/2o3/2o5x5*a3/2*c *b5*d - (contains "2doe") |
x3o3o5o5*a3/2*c *b5/4*d - (contains "2tet") o3x3o5o5*a3/2*c *b5/4*d - (contains "2tet") o3o3o5x5*a3/2*c *b5/4*d - (contains "2doe") |
other Wythoffians |
x3/2x3/2o5o5*a3/2*c *b5*d - [Grünbaumian] x3/2o3/2o5x5*a3/2*c *b5*d - x3/2x3/2x5o5*a3/2*c *b5*d - [Grünbaumian] x3/2x3/2o5x5*a3/2*c *b5*d - [Grünbaumian] x3/2x3/2x5x5*a3/2*c *b5*d - [Grünbaumian] |
x3x3o5o5*a3/2*c *b5/4*d - x3o3x5o5*a3/2*c *b5/4*d - [Grünbaumian] x3o3o5x5*a3/2*c *b5/4*d - o3x3o5x5*a3/2*c *b5/4*d - [Grünbaumian] x3x3x5o5*a3/2*c *b5/4*d - [Grünbaumian] x3x3o5x5*a3/2*c *b5/4*d - [Grünbaumian] x3o3x5x5*a3/2*c *b5/4*d - [Grünbaumian] x3x3x5x5*a3/2*c *b5/4*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
o3o3o5/4o5/4*a3/2*c *b5*d (µ=966) | o3/2o3/2o5/4o5/4*a3/2*c *b5/4*d (µ=3594) | |
quasiregulars |
x3o3o5/4o5/4*a3/2*c *b5*d - (contains "2tet") o3x3o5/4o5/4*a3/2*c *b5*d - (contains "2tet") o3o3o5/4x5/4*a3/2*c *b5*d - (contains "2doe") |
x3/2o3/2o5/4o5/4*a3/2*c *b5/4*d - (contains "2tet") o3/2o3/2o5/4x5/4*a3/2*c *b5/4*d - (contains "2doe") |
other Wythoffians |
x3x3o5/4o5/4*a3/2*c *b5*d - x3o3x5/4o5/4*a3/2*c *b5*d - [Grünbaumian] x3o3o5/4x5/4*a3/2*c *b5*d - [Grünbaumian] o3x3o5/4x5/4*a3/2*c *b5*d - x3x3x5/4o5/4*a3/2*c *b5*d - [Grünbaumian] x3x3o5/4x5/4*a3/2*c *b5*d - [Grünbaumian] x3o3x5/4x5/4*a3/2*c *b5*d - [Grünbaumian] x3x3x5/4x5/4*a3/2*c *b5*d - [Grünbaumian] |
x3/2x3/2o5/4o5/4*a3/2*c *b5/4*d - [Grünbaumian] x3/2o3/2o5/4x5/4*a3/2*c *b5/4*d - [Grünbaumian] x3/2x3/2x5/4o5/4*a3/2*c *b5/4*d - [Grünbaumian] x3/2x3/2o5/4x5/4*a3/2*c *b5/4*d - [Grünbaumian] x3/2x3/2x5/4x5/4*a3/2*c *b5/4*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
o3o3o5/2o5/2*a3/2*c *b5/3*d (µ=534) | o3o3/2o5/3o5/2*a3*c *b5/3*d (µ=666) | |
quasiregulars |
x3o3o5/2o5/2*a3/2*c *b5/3*d - (contains "2tet") o3x3o5/2o5/2*a3/2*c *b5/3*d - (contains "2tet") o3o3o5/2x5/2*a3/2*c *b5/3*d - (contains "2gissid") |
x3o3/2o5/3o5/2*a3*c *b5/3*d - (contains "2tet") o3x3/2o5/3o5/2*a3*c *b5/3*d - (contains "2tet") o3o3/2o5/3x5/2*a3*c *b5/3*d - (contains "2gissid") |
other Wythoffians |
x3x3o5/2o5/2*a3/2*c *b5/3*d - x3o3x5/2o5/2*a3/2*c *b5/3*d - [Grünbaumian] x3o3o5/2x5/2*a3/2*c *b5/3*d - [Grünbaumian] o3x3o5/2x5/2*a3/2*c *b5/3*d - x3x3x5/2o5/2*a3/2*c *b5/3*d - [Grünbaumian] x3x3o5/2x5/2*a3/2*c *b5/3*d - [Grünbaumian] x3o3x5/2x5/2*a3/2*c *b5/3*d - [Grünbaumian] x3x3x5/2x5/2*a3/2*c *b5/3*d - [Grünbaumian] |
x3x3/2o5/3o5/2*a3*c *b5/3*d - x3o3/2o5/3x5/2*a3*c *b5/3*d - [Grünbaumian] o3x3/2x5/3o5/2*a3*c *b5/3*d - [Grünbaumian] o3x3/2o5/3x5/2*a3*c *b5/3*d - x3x3/2x5/3o5/2*a3*c *b5/3*d - [Grünbaumian] x3x3/2o5/3x5/2*a3*c *b5/3*d - [Grünbaumian] o3x3/2x5/3x5/2*a3*c *b5/3*d - [Grünbaumian] x3x3/2x5/3x5/2*a3*c *b5/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
o3/2o3/2o5/2o5/2*a3/2*c *b5/2*d (µ=1146) | o3/2o3/2o5/3o5/3*a3/2*c *b5/3*d (µ=2454) | |
quasiregulars |
x3/2o3/2o5/2o5/2*a3/2*c *b5/2*d - (contains "2tet") o3/2o3/2o5/2x5/2*a3/2*c *b5/2*d - (contains "2gissid") |
x3/2o3/2o5/3o5/3*a3/2*c *b5/3*d - (contains "2tet") o3/2o3/2o5/3x5/3*a3/2*c *b5/3*d - (contains "2gissid") |
other Wythoffians |
x3/2x3/2o5/2o5/2*a3/2*c *b5/2*d - [Grünbaumian] x3/2o3/2o5/2x5/2*a3/2*c *b5/2*d - [Grünbaumian] x3/2x3/2x5/2o5/2*a3/2*c *b5/2*d - [Grünbaumian] x3/2x3/2o5/2x5/2*a3/2*c *b5/2*d - [Grünbaumian] x3/2x3/2x5/2x5/2*a3/2*c *b5/2*d - [Grünbaumian] |
x3/2x3/2o5/3o5/3*a3/2*c *b5/3*d - [Grünbaumian] x3/2o3/2o5/3x5/3*a3/2*c *b5/3*d - x3/2x3/2x5/3o5/3*a3/2*c *b5/3*d - [Grünbaumian] x3/2x3/2o5/3x5/3*a3/2*c *b5/3*d - [Grünbaumian] x3/2x3/2x5/3x5/3*a3/2*c *b5/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
o3o3o5o5*a3/2*c *b5/3*d (µ=10) | o3/2o3/2o5o5*a3/2*c *b5/2*d (µ=230) | o3o3/2o5/4o5*a3*c *b5/3*d (µ=470) | |
quasiregulars |
x3o3o5o5*a3/2*c *b5/3*d - (contains "2tet") o3x3o5o5*a3/2*c *b5/3*d - (contains "2tet") o3o3o5x5*a3/2*c *b5/3*d - (contains "2doe") |
x3/2o3/2o5o5*a3/2*c *b5/2*d - (contains "2tet") o3/2x3/2o5o5*a3/2*c *b5/2*d - (contains "2tet") o3/2o3/2o5x5*a3/2*c *b5/2*d - (contains "2doe") |
x3o3/2o5/4o5*a3*c *b5/3*d - (contains "2tet") o3x3/2o5/4o5*a3*c *b5/3*d - (contains "2tet") o3o3/2x5/4o5*a3*c *b5/3*d - (contains "2tet") o3o3/2o5/4x5*a3*c *b5/3*d - (contains "2doe") |
other Wythoffians |
x3x3o5o5*a3/2*c *b5/3*d - x3o3x5o5*a3/2*c *b5/3*d - [Grünbaumian] x3o3o5x5*a3/2*c *b5/3*d - o3x3o5x5*a3/2*c *b5/3*d - x3x3x5o5*a3/2*c *b5/3*d - [Grünbaumian] x3x3o5x5*a3/2*c *b5/3*d - skiv datixathi x3o3x5x5*a3/2*c *b5/3*d - [Grünbaumian] x3x3x5x5*a3/2*c *b5/3*d - [Grünbaumian] |
x3/2x3/2o5o5*a3/2*c *b5/2*d - [Grünbaumian] x3/2o3/2x5o5*a3/2*c *b5/2*d - [Grünbaumian] x3/2o3/2o5x5*a3/2*c *b5/2*d - o3/2x3/2o5x5*a3/2*c *b5/2*d - [Grünbaumian] x3/2x3/2x5o5*a3/2*c *b5/2*d - [Grünbaumian] x3/2x3/2o5x5*a3/2*c *b5/2*d - [Grünbaumian] x3/2o3/2x5x5*a3/2*c *b5/2*d - [Grünbaumian] x3/2x3/2x5x5*a3/2*c *b5/2*d - [Grünbaumian] |
x3x3/2o5/4o5*a3*c *b5/3*d - x3o3/2x5/4o5*a3*c *b5/3*d - x3o3/2o5/4x5*a3*c *b5/3*d - o3x3/2x5/4o5*a3*c *b5/3*d - [Grünbaumian] o3x3/2o5/4x5*a3*c *b5/3*d - o3o3/2x5/4x5*a3*c *b5/3*d - [Grünbaumian] x3x3/2x5/4o5*a3*c *b5/3*d - [Grünbaumian] x3x3/2o5/4x5*a3*c *b5/3*d - x3o3/2x5/4x5*a3*c *b5/3*d - [Grünbaumian] o3x3/2x5/4x5*a3*c *b5/3*d - [Grünbaumian] x3x3/2x5/4x5*a3*c *b5/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3/2o5o5/4*a3*c *b5/2*d (µ=730) | o3o3o5/4o5/4*a3/2*c *b5/2*d (µ=1190) | o3/2o3/2o5/4o5/4*a3/2*c *b5/3*d (µ=3370) | |
quasiregulars |
x3o3/2o5o5/4*a3*c *b5/2*d - (contains "2tet") o3x3/2o5o5/4*a3*c *b5/2*d - (contains "2tet") o3o3/2x5o5/4*a3*c *b5/2*d - (contains "2tet") o3o3/2o5x5/4*a3*c *b5/2*d - (contains "2doe") |
x3o3o5/4o5/4*a3/2*c *b5/2*d - (contains "2tet") o3x3o5/4o5/4*a3/2*c *b5/2*d - (contains "2tet") o3o3o5/4x5/4*a3/2*c *b5/2*d - (contains "2doe") |
x3/2o3/2o5/4o5/4*a3/2*c *b5/3*d - (contains "2tet") o3/2x3/2o5/4o5/4*a3/2*c *b5/3*d - (contains "2tet") o3/2o3/2o5/4x5/4*a3/2*c *b5/3*d - (contains "2doe") |
other Wythoffians |
x3x3/2o5o5/4*a3*c *b5/2*d - x3o3/2x5o5/4*a3*c *b5/2*d - x3o3/2o5x5/4*a3*c *b5/2*d - [Grünbaumian] o3x3/2x5o5/4*a3*c *b5/2*d - [Grünbaumian] o3x3/2o5x5/4*a3*c *b5/2*d - [Grünbaumian] o3o3/2x5x5/4*a3*c *b5/2*d - x3x3/2x5o5/4*a3*c *b5/2*d - [Grünbaumian] x3x3/2o5x5/4*a3*c *b5/2*d - [Grünbaumian] x3o3/2x5x5/4*a3*c *b5/2*d - [Grünbaumian] o3x3/2x5x5/4*a3*c *b5/2*d - [Grünbaumian] x3x3/2x5x5/4*a3*c *b5/2*d - [Grünbaumian] |
x3x3o5/4o5/4*a3/2*c *b5/2*d - x3o3x5/4o5/4*a3/2*c *b5/2*d - [Grünbaumian] x3o3o5/4x5/4*a3/2*c *b5/2*d - [Grünbaumian] o3x3o5/4x5/4*a3/2*c *b5/2*d - [Grünbaumian] x3x3x5/4o5/4*a3/2*c *b5/2*d - [Grünbaumian] x3x3o5/4x5/4*a3/2*c *b5/2*d - [Grünbaumian] x3o3x5/4x5/4*a3/2*c *b5/2*d - [Grünbaumian] x3x3x5/4x5/4*a3/2*c *b5/2*d - [Grünbaumian] |
x3/2x3/2o5/4o5/4*a3/2*c *b5/3*d - [Grünbaumian] x3/2o3/2x5/4o5/4*a3/2*c *b5/3*d - [Grünbaumian] x3/2o3/2o5/4x5/4*a3/2*c *b5/3*d - [Grünbaumian] o3/2x3/2o5/4x5/4*a3/2*c *b5/3*d - [Grünbaumian] x3/2x3/2x5/4o5/4*a3/2*c *b5/3*d - [Grünbaumian] x3/2x3/2o5/4x5/4*a3/2*c *b5/3*d - [Grünbaumian] x3/2o3/2x5/4x5/4*a3/2*c *b5/3*d - [Grünbaumian] x3/2x3/2x5/4x5/4*a3/2*c *b5/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3o5/3o5/3*a3/2*c *b5*d (µ=230) | o3/2o3o5/3o5/2*a3*c *b5*d (µ=250) | o3/2o3/2o5/2o5/2*a3/2*c *b5*d (µ=710) | |
quasiregulars |
x3o3o5/3o5/3*a3/2*c *b5*d - (contains "2tet") o3x3o5/3o5/3*a3/2*c *b5*d - (contains "2tet") o3o3o5/3x5/3*a3/2*c *b5*d - (contains "2gissid") |
x3/2o3o5/3o5/2*a3*c *b5*d - (contains "2tet") o3/2x3o5/3o5/2*a3*c *b5*d - (contains "2tet") o3/2o3x5/3o5/2*a3*c *b5*d - (contains "2tet") o3/2o3o5/3x5/2*a3*c *b5*d - (contains "2gissid") |
x3/2o3/2o5/2o5/2*a3/2*c *b5*d - (contains "2tet") o3/2x3/2o5/2o5/2*a3/2*c *b5*d - (contains "2tet") o3/2o3/2o5/2x5/2*a3/2*c *b5*d - (contains "2gissid") |
other Wythoffians |
x3x3o5/3o5/3*a3/2*c *b5*d - x3o3x5/3o5/3*a3/2*c *b5*d - [Grünbaumian] x3o3o5/3x5/3*a3/2*c *b5*d - o3x3o5/3x5/3*a3/2*c *b5*d - x3x3x5/3o5/3*a3/2*c *b5*d - [Grünbaumian] x3x3o5/3x5/3*a3/2*c *b5*d - gikkiv datixathi x3o3x5/3x5/3*a3/2*c *b5*d - [Grünbaumian] x3x3x5/3x5/3*a3/2*c *b5*d - [Grünbaumian] |
x3/2x3o5/3o5/2*a3*c *b5*d - [Grünbaumian] x3/2o3x5/3o5/2*a3*c *b5*d - x3/2o3o5/3x5/2*a3*c *b5*d - [Grünbaumian] o3/2x3x5/3o5/2*a3*c *b5*d - o3/2x3o5/3x5/2*a3*c *b5*d - o3/2o3x5/3x5/2*a3*c *b5*d - x3/2x3x5/3o5/2*a3*c *b5*d - [Grünbaumian] x3/2x3o5/3x5/2*a3*c *b5*d - [Grünbaumian] x3/2o3x5/3x5/2*a3*c *b5*d - [Grünbaumian] o3/2x3x5/3x5/2*a3*c *b5*d - x3/2x3x5/3x5/2*a3*c *b5*d - [Grünbaumian] |
x3/2x3/2o5/2o5/2*a3/2*c *b5*d - [Grünbaumian] x3/2o3/2x5/2o5/2*a3/2*c *b5*d - [Grünbaumian] x3/2o3/2o5/2x5/2*a3/2*c *b5*d - [Grünbaumian] o3/2x3/2o5/2x5/2*a3/2*c *b5*d - x3/2x3/2x5/2o5/2*a3/2*c *b5*d - [Grünbaumian] x3/2x3/2o5/2x5/2*a3/2*c *b5*d - [Grünbaumian] x3/2o3/2x5/2x5/2*a3/2*c *b5*d - [Grünbaumian] x3/2x3/2x5/2x5/2*a3/2*c *b5*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3/2o5/3o5/2*a3*c *b5/4*d (µ=950) | o3o3o5/2o5/2*a3/2*c *b5/4*d (µ=970) | o3/2o3/2o5/3o5/3*a3/2*c *b5/4*d (µ=2890) | |
quasiregulars |
x3o3/2o5/3o5/2*a3*c *b5/4*d - (contains "2tet") o3x3/2o5/3o5/2*a3*c *b5/4*d - (contains "2tet") o3o3/2x5/3o5/2*a3*c *b5/4*d - (contains "2tet") o3o3/2o5/3x5/2*a3*c *b5/4*d - (contains "2gissid") |
x3o3o5/2o5/2*a3/2*c *b5/4*d - (contains "2tet") o3x3o5/2o5/2*a3/2*c *b5/4*d - (contains "2tet") o3o3o5/2x5/2*a3/2*c *b5/4*d - (contains "2gissid") |
x3/2o3/2o5/3o5/3*a3/2*c *b5/4*d - (contains "2tet") o3/2x3/2o5/3o5/3*a3/2*c *b5/4*d - (contains "2tet") o3/2o3/2o5/3x5/3*a3/2*c *b5/4*d - (contains "2gissid") |
other Wythoffians |
x3x3/2o5/3o5/2*a3*c *b5/4*d - x3o3/2x5/3o5/2*a3*c *b5/4*d - x3o3/2o5/3x5/2*a3*c *b5/4*d - [Grünbaumian] o3x3/2x5/3o5/2*a3*c *b5/4*d - [Grünbaumian] o3x3/2o5/3x5/2*a3*c *b5/4*d - [Grünbaumian] o3o3/2x5/3x5/2*a3*c *b5/4*d - x3x3/2x5/3o5/2*a3*c *b5/4*d - [Grünbaumian] x3x3/2o5/3x5/2*a3*c *b5/4*d - [Grünbaumian] x3o3/2x5/3x5/2*a3*c *b5/4*d - [Grünbaumian] o3x3/2x5/3x5/2*a3*c *b5/4*d - [Grünbaumian] x3x3/2x5/3x5/2*a3*c *b5/4*d - [Grünbaumian] |
x3x3o5/2o5/2*a3/2*c *b5/4*d - x3o3x5/2o5/2*a3/2*c *b5/4*d - [Grünbaumian] x3o3o5/2x5/2*a3/2*c *b5/4*d - [Grünbaumian] o3x3o5/2x5/2*a3/2*c *b5/4*d - [Grünbaumian] x3x3x5/2o5/2*a3/2*c *b5/4*d - [Grünbaumian] x3x3o5/2x5/2*a3/2*c *b5/4*d - [Grünbaumian] x3o3x5/2x5/2*a3/2*c *b5/4*d - [Grünbaumian] x3x3x5/2x5/2*a3/2*c *b5/4*d - [Grünbaumian] |
x3/2x3/2o5/3o5/3*a3/2*c *b5/4*d - [Grünbaumian] x3/2o3/2x5/3o5/3*a3/2*c *b5/4*d - [Grünbaumian] x3/2o3/2o5/3x5/3*a3/2*c *b5/4*d - o3/2x3/2o5/3x5/3*a3/2*c *b5/4*d - [Grünbaumian] x3/2x3/2x5/3o5/3*a3/2*c *b5/4*d - [Grünbaumian] x3/2x3/2o5/3x5/3*a3/2*c *b5/4*d - [Grünbaumian] x3/2o3/2x5/3x5/3*a3/2*c *b5/4*d - [Grünbaumian] x3/2x3/2x5/3x5/3*a3/2*c *b5/4*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o5o3o5*a3/2*c *b5/3*d (µ=56) | o3/2o5o3/2o5*a3*c *b5/2*d (µ=296) | o3/2o5o3o5/4*a3*c *b5/3*d (µ=424) | |
quasiregulars |
x3o5o3o5*a3/2*c *b5/3*d - (contains "2gike") o3x5o3o5*a3/2*c *b5/3*d - (contains gacid) |
x3/2o5o3/2o5*a3*c *b5/2*d - (contains "2gike") o3/2x5o3/2o5*a3*c *b5/2*d - (contains gacid) |
x3/2o5o3o5/4*a3*c *b5/3*d - (contains "2gike") o3/2x5o3o5/4*a3*c *b5/3*d - (contains gacid) o3/2o5x3o5/4*a3*c *b5/3*d - (contains "2gike") o3/2o5o3x5/4*a3*c *b5/3*d - (contains gacid) |
other Wythoffians |
x3x5o3o5*a3/2*c *b5/3*d - x3o5x3o5*a3/2*c *b5/3*d - [Grünbaumian] x3o5o3x5*a3/2*c *b5/3*d - o3x5o3x5*a3/2*c *b5/3*d - x3x5x3o5*a3/2*c *b5/3*d - [Grünbaumian] x3x5o3x5*a3/2*c *b5/3*d - x3x5x3x5*a3/2*c *b5/3*d - [Grünbaumian] |
x3/2x5o3/2o5*a3*c *b5/2*d - [Grünbaumian] x3/2o5x3/2o5*a3*c *b5/2*d - x3/2o5o3/2x5*a3*c *b5/2*d - o3/2x5o3/2x5*a3*c *b5/2*d - [Grünbaumian] x3/2x5x3/2o5*a3*c *b5/2*d - [Grünbaumian] x3/2x5o3/2x5*a3*c *b5/2*d - [Grünbaumian] x3/2x5x3/2x5*a3*c *b5/2*d - [Grünbaumian] |
x3/2x5o3o5/4*a3*c *b5/3*d - [Grünbaumian] x3/2o5x3o5/4*a3*c *b5/3*d - x3/2o5o3x5/4*a3*c *b5/3*d - [Grünbaumian] o3/2x5x3o5/4*a3*c *b5/3*d - o3/2x5o3x5/4*a3*c *b5/3*d - "2gidditdy" o3/2o5x3x5/4*a3*c *b5/3*d - x3/2x5x3o5/4*a3*c *b5/3*d - [Grünbaumian] x3/2x5o3x5/4*a3*c *b5/3*d - [Grünbaumian] x3/2o5x3x5/4*a3*c *b5/3*d - [Grünbaumian] o3/2x5x3x5/4*a3*c *b5/3*d - x3/2x5x3x5/4*a3*c *b5/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o5o3/2o5/4*a3/2*c *b5/2*d (µ=664) | o3o5/4o3o5/4*a3*c *b5/2*d (µ=1256) | o3/2o5/4o3/2o5/4*a3/2*c *b5/3*d (µ=3416) | |
quasiregulars |
x3o5o3/2o5/4*a3/2*c *b5/2*d - (contains "2gike") o3x5o3/2o5/4*a3/2*c *b5/2*d - (contains gacid) o3o5x3/2o5/4*a3/2*c *b5/2*d - (contains "2gike") o3o5o3/2x5/4*a3/2*c *b5/2*d - (contains gacid) |
x3o5/4o3o5/4*a3*c *b5/2*d - (contains "2gike") o3x5/4o3o5/4*a3*c *b5/2*d - (contains gacid) |
x3/2o5/4o3/2o5/4*a3/2*c *b5/3*d - (contains "2gike") o3/2x5/4o3/2o5/4*a3/2*c *b5/3*d - (contains gacid) |
other Wythoffians |
x3x5o3/2o5/4*a3/2*c *b5/2*d - x3o5x3/2o5/4*a3/2*c *b5/2*d - [Grünbaumian] x3o5o3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian] o3x5x3/2o5/4*a3/2*c *b5/2*d - o3x5o3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian] o3o5x3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian] x3x5x3/2o5/4*a3/2*c *b5/2*d - [Grünbaumian] x3x5o3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian] x3o5x3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian] o3x5x3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian] x3x5x3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian] |
x3x5/4o3o5/4*a3*c *b5/2*d - x3o5/4x3o5/4*a3*c *b5/2*d - x3o5/4o3x5/4*a3*c *b5/2*d - [Grünbaumian] o3x5/4o3x5/4*a3*c *b5/2*d - [Grünbaumian] x3x5/4x3o5/4*a3*c *b5/2*d - [Grünbaumian] x3x5/4o3x5/4*a3*c *b5/2*d - [Grünbaumian] x3x5/4x3x5/4*a3*c *b5/2*d - [Grünbaumian] |
x3/2x5/4o3/2o5/4*a3/2*c *b5/3*d - [Grünbaumian] x3/2o5/4x3/2o5/4*a3/2*c *b5/3*d - [Grünbaumian] x3/2o5/4o3/2x5/4*a3/2*c *b5/3*d - [Grünbaumian] o3/2x5/4o3/2x5/4*a3/2*c *b5/3*d - x3/2x5/4x3/2o5/4*a3/2*c *b5/3*d - [Grünbaumian] x3/2x5/4o3/2x5/4*a3/2*c *b5/3*d - [Grünbaumian] x3/2x5/4x3/2x5/4*a3/2*c *b5/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o5/2o3o5/2*a3*c *b5/4*d (µ=104) | o3o5/2o3/2o5/3*a3*c *b5*d (µ=136) | o3o5/3o3o5/3*a3/2*c *b5*d (µ=344) | |
quasiregulars |
x3o5/2o3o5/2*a3*c *b5/4*d - (contains "2ike") o3x5/2o3o5/2*a3*c *b5/4*d - (contains cid) |
x3o5/2o3/2o5/3*a3*c *b5*d - (contains "2ike") o3x5/2o3/2o5/3*a3*c *b5*d - (contains cid) o3o5/2x3/2o5/3*a3*c *b5*d - (contains "2ike") o3o5/2o3/2x5/3*a3*c *b5*d - (contains cid) |
x3o5/3o3o5/3*a3/2*c *b5*d - (contains "2ike") o3x5/3o3o5/3*a3/2*c *b5*d - (contains cid) |
other Wythoffians |
x3x5/2o3o5/2*a3*c *b5/4*d - x3o5/2x3o5/2*a3*c *b5/4*d - x3o5/2o3x5/2*a3*c *b5/4*d - [Grünbaumian] o3x5/2o3x5/2*a3*c *b5/4*d - [Grünbaumian] x3x5/2x3o5/2*a3*c *b5/4*d - [Grünbaumian] x3x5/2o3x5/2*a3*c *b5/4*d - [Grünbaumian] x3x5/2x3x5/2*a3*c *b5/4*d - [Grünbaumian] |
x3x5/2o3/2o5/3*a3*c *b5*d - x3o5/2x3/2o5/3*a3*c *b5*d - x3o5/2o3/2x5/3*a3*c *b5*d - o3x5/2x3/2o5/3*a3*c *b5*d - [Grünbaumian] o3x5/2o3/2x5/3*a3*c *b5*d - "2sidditdy" o3o5/2x3/2x5/3*a3*c *b5*d - [Grünbaumian] x3x5/2x3/2o5/3*a3*c *b5*d - [Grünbaumian] x3x5/2o3/2x5/3*a3*c *b5*d - x3o5/2x3/2x5/3*a3*c *b5*d - [Grünbaumian] o3x5/2x3/2x5/3*a3*c *b5*d - [Grünbaumian] x3x5/2x3/2x5/3*a3*c *b5*d - [Grünbaumian] |
x3x5/3o3o5/3*a3/2*c *b5*d - x3o5/3x3o5/3*a3/2*c *b5*d - [Grünbaumian] x3o5/3o3x5/3*a3/2*c *b5*d - o3x5/3o3x5/3*a3/2*c *b5*d - x3x5/3x3o5/3*a3/2*c *b5*d - [Grünbaumian] x3x5/3o3x5/3*a3/2*c *b5*d - x3x5/3x3x5/3*a3/2*c *b5*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3/2o5/2o3/2o5/2*a3/2*c *b5*d (µ=824) | o3o5/3o3/2o5/2*a3/2*c *b5/4*d (µ=1816) | o3/2o5/3o3/2o5/3*a3*c *b5/4*d (µ=2024) | |
quasiregulars |
x3/2o5/2o3/2o5/2*a3/2*c *b5*d - (contains "2ike") o3/2x5/2o3/2o5/2*a3/2*c *b5*d - (contains cid) |
x3o5/3o3/2o5/2*a3/2*c *b5/4*d - (contains "2ike") o3x5/3o3/2o5/2*a3/2*c *b5/4*d - (contains cid) o3o5/3x3/2o5/2*a3/2*c *b5/4*d - (contains "2ike") o3o5/3o3/2x5/2*a3/2*c *b5/4*d - (contains cid) |
x3/2o5/3o3/2o5/3*a3*c *b5/4*d - (contains "2ike") o3/2x5/3o3/2o5/3*a3*c *b5/4*d - (contains cid) |
other Wythoffians |
x3/2x5/2o3/2o5/2*a3/2*c *b5*d - [Grünbaumian] x3/2o5/2x3/2o5/2*a3/2*c *b5*d - [Grünbaumian] x3/2o5/2o3/2x5/2*a3/2*c *b5*d - [Grünbaumian] o3/2x5/2o3/2x5/2*a3/2*c *b5*d - x3/2x5/2x3/2o5/2*a3/2*c *b5*d - [Grünbaumian] x3/2x5/2o3/2x5/2*a3/2*c *b5*d - [Grünbaumian] x3/2x5/2x3/2x5/2*a3/2*c *b5*d - [Grünbaumian] |
x3x5/3o3/2o5/2*a3/2*c *b5/4*d - x3o5/3x3/2o5/2*a3/2*c *b5/4*d - [Grünbaumian] x3o5/3o3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian] o3x5/3x3/2o5/2*a3/2*c *b5/4*d - o3x5/3o3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian] o3o5/3x3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian] x3x5/3x3/2o5/2*a3/2*c *b5/4*d - [Grünbaumian] x3x5/3o3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian] x3o5/3x3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian] o3x5/3x3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian] x3x5/3x3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian] |
x3/2x5/3o3/2o5/3*a3*c *b5/4*d - [Grünbaumian] x3/2o5/3x3/2o5/3*a3*c *b5/4*d - x3/2o5/3o3/2x5/3*a3*c *b5/4*d - o3/2x5/3o3/2x5/3*a3*c *b5/4*d - [Grünbaumian] x3/2x5/3x3/2o5/3*a3*c *b5/4*d - [Grünbaumian] x3/2x5/3o3/2x5/3*a3*c *b5/4*d - [Grünbaumian] x3/2x5/3x3/2x5/3*a3*c *b5/4*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3/2o3/2o5o5*a5/4*c *b5*d (µ=92) | o3o3/2o5o5/4*a5*c *b5*d (µ=148) | o3o3/2o5/4o5*a5*c *b5/4*d (µ=572) | |
quasiregulars |
x3/2o3/2o5o5*a5/4*c *b5*d - (contains "2gad") o3/2x3/2o5o5*a5/4*c *b5*d - (contains "2gike") o3/2o3/2o5x5*a5/4*c *b5*d - (contains "2doe") |
x3o3/2o5o5/4*a5*c *b5*d - (contains "2gad") o3x3/2o5o5/4*a5*c *b5*d - (contains "2gike") o3o3/2x5o5/4*a5*c *b5*d - (contains "2gad") o3o3/2o5x5/4*a5*c *b5*d - (contains "2doe") |
x3o3/2o5/4o5*a5*c *b5/4*d - (contains "2gad") o3x3/2o5/4o5*a5*c *b5/4*d - (contains "2gike") o3o3/2x5/4o5*a5*c *b5/4*d - (contains "2gad") o3o3/2o5/4x5*a5*c *b5/4*d - (contains "2doe") |
other Wythoffians |
x3/2x3/2o5o5*a5/4*c *b5*d - [Grünbaumian] x3/2o3/2x5o5*a5/4*c *b5*d - [Grünbaumian] x3/2o3/2o5x5*a5/4*c *b5*d - o3/2x3/2o5x5*a5/4*c *b5*d - x3/2x3/2x5o5*a5/4*c *b5*d - [Grünbaumian] x3/2x3/2o5x5*a5/4*c *b5*d - [Grünbaumian] x3/2o3/2x5x5*a5/4*c *b5*d - [Grünbaumian] x3/2x3/2x5x5*a5/4*c *b5*d - [Grünbaumian] |
x3x3/2o5o5/4*a5*c *b5*d - x3o3/2x5o5/4*a5*c *b5*d - x3o3/2o5x5/4*a5*c *b5*d - [Grünbaumian] o3x3/2x5o5/4*a5*c *b5*d - [Grünbaumian] o3x3/2o5x5/4*a5*c *b5*d - o3o3/2x5x5/4*a5*c *b5*d - x3x3/2x5o5/4*a5*c *b5*d - [Grünbaumian] x3x3/2o5x5/4*a5*c *b5*d - [Grünbaumian] x3o3/2x5x5/4*a5*c *b5*d - [Grünbaumian] o3x3/2x5x5/4*a5*c *b5*d - [Grünbaumian] x3x3/2x5x5/4*a5*c *b5*d - [Grünbaumian] |
x3x3/2o5/4o5*a5*c *b5/4*d - x3o3/2x5/4o5*a5*c *b5/4*d - x3o3/2o5/4x5*a5*c *b5/4*d - o3x3/2x5/4o5*a5*c *b5/4*d - [Grünbaumian] o3x3/2o5/4x5*a5*c *b5/4*d - [Grünbaumian] o3o3/2x5/4x5*a5*c *b5/4*d - [Grünbaumian] x3x3/2x5/4o5*a5*c *b5/4*d - [Grünbaumian] x3x3/2o5/4x5*a5*c *b5/4*d - [Grünbaumian] x3o3/2x5/4x5*a5*c *b5/4*d - [Grünbaumian] o3x3/2x5/4x5*a5*c *b5/4*d - [Grünbaumian] x3x3/2x5/4x5*a5*c *b5/4*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3o5o5*a5/4*c *b5/4*d (µ=628) | o3o3o5/4o5/4*a5/4*c *b5*d (µ=1052) | o3/2o3/2o5/4o5/4*a5/4*c *b5/4*d (µ=3988) | |
quasiregulars |
x3o3o5o5*a5/4*c *b5/4*d - (contains "2gad") o3x3o5o5*a5/4*c *b5/4*d - (contains "2gike") o3o3o5x5*a5/4*c *b5/4*d - (contains "2doe") |
x3o3o5/4o5/4*a5/4*c *b5*d - (contains "2gad") o3x3o5/4o5/4*a5/4*c *b5*d - (contains "2gike") o3o3o5/4x5/4*a5/4*c *b5*d - (contains "2doe") |
x3/2o3/2o5/4o5/4*a5/4*c *b5/4*d - (contains "2gad") o3/2x3/2o5/4o5/4*a5/4*c *b5/4*d - (contains "2gike") o3/2o3/2o5/4x5/4*a5/4*c *b5/4*d - (contains "2doe") |
other Wythoffians |
x3x3o5o5*a5/4*c *b5/4*d - x3o3x5o5*a5/4*c *b5/4*d - [Grünbaumian] x3o3o5x5*a5/4*c *b5/4*d - o3x3o5x5*a5/4*c *b5/4*d - [Grünbaumian] x3x3x5o5*a5/4*c *b5/4*d - [Grünbaumian] x3x3o5x5*a5/4*c *b5/4*d - [Grünbaumian] x3o3x5x5*a5/4*c *b5/4*d - [Grünbaumian] x3x3x5x5*a5/4*c *b5/4*d - [Grünbaumian] |
x3x3o5/4o5/4*a5/4*c *b5*d - x3o3x5/4o5/4*a5/4*c *b5*d - [Grünbaumian] x3o3o5/4x5/4*a5/4*c *b5*d - [Grünbaumian] o3x3o5/4x5/4*a5/4*c *b5*d - x3x3x5/4o5/4*a5/4*c *b5*d - [Grünbaumian] x3x3o5/4x5/4*a5/4*c *b5*d - [Grünbaumian] x3o3x5/4x5/4*a5/4*c *b5*d - [Grünbaumian] x3x3x5/4x5/4*a5/4*c *b5*d - [Grünbaumian] |
x3/2x3/2o5/4o5/4*a5/4*c *b5/4*d - [Grünbaumian] x3/2o3/2x5/4o5/4*a5/4*c *b5/4*d - [Grünbaumian] x3/2o3/2o5/4x5/4*a5/4*c *b5/4*d - [Grünbaumian] o3/2x3/2o5/4x5/4*a5/4*c *b5/4*d - [Grünbaumian] x3/2x3/2x5/4o5/4*a5/4*c *b5/4*d - [Grünbaumian] x3/2x3/2o5/4x5/4*a5/4*c *b5/4*d - [Grünbaumian] x3/2o3/2x5/4x5/4*a5/4*c *b5/4*d - [Grünbaumian] x3/2x3/2x5/4x5/4*a5/4*c *b5/4*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3o5/2o5/2*a5/2*c *b5/3*d (µ=52) | o3o3o5/3o5/3*a5/2*c *b5/2*d (µ=188) | o3/2o3/2o5/2o5/2*a5/2*c *b5/2*d (µ=668) | |
quasiregulars |
x3o3o5/2o5/2*a5/2*c *b5/3*d - (contains "2sissid") o3x3o5/2o5/2*a5/2*c *b5/3*d - (contains "2ike") o3o3o5/2x5/2*a5/2*c *b5/3*d - (contains "2sissid") |
x3o3o5/3o5/3*a5/2*c *b5/2*d - (contains "2sissid") o3x3o5/3o5/3*a5/2*c *b5/2*d - (contains "2ike") o3o3o5/3x5/3*a5/2*c *b5/2*d - (contains "2sissid") |
x3/2o3/2o5/2o5/2*a5/2*c *b5/2*d - (contains "2sissid") o3/2x3/2o5/2o5/2*a5/2*c *b5/2*d - (contains "2ike") o3/2o3/2o5/2x5/2*a5/2*c *b5/2*d - (contains "2sissid") |
other Wythoffians |
x3x3o5/2o5/2*a5/2*c *b5/3*d - x3o3x5/2o5/2*a5/2*c *b5/3*d - [Grünbaumian] x3o3o5/2x5/2*a5/2*c *b5/3*d - [Grünbaumian] o3x3o5/2x5/2*a5/2*c *b5/3*d - x3x3x5/2o5/2*a5/2*c *b5/3*d - [Grünbaumian] x3x3o5/2x5/2*a5/2*c *b5/3*d - [Grünbaumian] x3o3x5/2x5/2*a5/2*c *b5/3*d - [Grünbaumian] x3x3x5/2x5/2*a5/2*c *b5/3*d - [Grünbaumian] |
x3x3o5/3o5/3*a5/2*c *b5/2*d - x3o3x5/3o5/3*a5/2*c *b5/2*d - [Grünbaumian] x3o3o5/3x5/3*a5/2*c *b5/2*d - o3x3o5/3x5/3*a5/2*c *b5/2*d - [Grünbaumian] x3x3x5/3o5/3*a5/2*c *b5/2*d - [Grünbaumian] x3x3o5/3x5/3*a5/2*c *b5/2*d - [Grünbaumian] x3o3x5/3x5/3*a5/2*c *b5/2*d - [Grünbaumian] x3x3x5/3x5/3*a5/2*c *b5/2*d - [Grünbaumian] |
x3/2x3/2o5/2o5/2*a5/2*c *b5/2*d - [Grünbaumian] x3/2o3/2x5/2o5/2*a5/2*c *b5/2*d - [Grünbaumian] x3/2o3/2o5/2x5/2*a5/2*c *b5/2*d - [Grünbaumian] o3/2x3/2o5/2x5/2*a5/2*c *b5/2*d - [Grünbaumian] x3/2x3/2x5/2o5/2*a5/2*c *b5/2*d - [Grünbaumian] x3/2x3/2o5/2x5/2*a5/2*c *b5/2*d - [Grünbaumian] x3/2o3/2x5/2x5/2*a5/2*c *b5/2*d - [Grünbaumian] x3/2x3/2x5/2x5/2*a5/2*c *b5/2*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3/2o5/2o5/3*a5/3*c *b5/2*d (µ=1012) | o3o3/2o5/3o5/2*a5/3*c *b5/3*d (µ=1148) | o3/2o3/2o5/3o5/3*a5/2*c *b5/3*d (µ=1972) | |
quasiregulars |
x3o3/2o5/2o5/3*a5/3*c *b5/2*d - (contains "2sissid") o3x3/2o5/2o5/3*a5/3*c *b5/2*d - (contains "2ike") o3o3/2x5/2o5/3*a5/3*c *b5/2*d - (contains "2sissid") o3o3/2o5/2x5/3*a5/3*c *b5/2*d - (contains "2sissid") |
x3o3/2o5/3o5/2*a5/3*c *b5/3*d - (contains "2sissid") o3x3/2o5/3o5/2*a5/3*c *b5/3*d - (contains "2ike") o3o3/2x5/3o5/2*a5/3*c *b5/3*d - (contains "2sissid") o3o3/2o5/3x5/2*a5/3*c *b5/3*d - (contains "2sissid") |
x3/2o3/2o5/3o5/3*a5/2*c *b5/3*d - (contains "2sissid") o3/2x3/2o5/3o5/3*a5/2*c *b5/3*d - (contains "2ike") o3/2o3/2o5/3x5/3*a5/2*c *b5/3*d - (contains "2sissid") |
other Wythoffians |
x3x3/2o5/2o5/3*a5/3*c *b5/2*d - x3o3/2x5/2o5/3*a5/3*c *b5/2*d - x3o3/2o5/2x5/3*a5/3*c *b5/2*d - o3x3/2x5/2o5/3*a5/3*c *b5/2*d - [Grünbaumian] o3x3/2o5/2x5/3*a5/3*c *b5/2*d - [Grünbaumian] o3o3/2x5/2x5/3*a5/3*c *b5/2*d - [Grünbaumian] x3x3/2x5/2o5/3*a5/3*c *b5/2*d - [Grünbaumian] x3x3/2o5/2x5/3*a5/3*c *b5/2*d - [Grünbaumian] x3o3/2x5/2x5/3*a5/3*c *b5/2*d - [Grünbaumian] o3x3/2x5/2x5/3*a5/3*c *b5/2*d - [Grünbaumian] x3x3/2x5/2x5/3*a5/3*c *b5/2*d - [Grünbaumian] |
x3x3/2o5/3o5/2*a5/3*c *b5/3*d - x3o3/2x5/3o5/2*a5/3*c *b5/3*d - x3o3/2o5/3x5/2*a5/3*c *b5/3*d - [Grünbaumian] o3x3/2x5/3o5/2*a5/3*c *b5/3*d - [Grünbaumian] o3x3/2o5/3x5/2*a5/3*c *b5/3*d - o3o3/2x5/3x5/2*a5/3*c *b5/3*d - x3x3/2x5/3o5/2*a5/3*c *b5/3*d - [Grünbaumian] x3x3/2o5/3x5/2*a5/3*c *b5/3*d - [Grünbaumian] x3o3/2x5/3x5/2*a5/3*c *b5/3*d - [Grünbaumian] o3x3/2x5/3x5/2*a5/3*c *b5/3*d - [Grünbaumian] x3x3/2x5/3x5/2*a5/3*c *b5/3*d - [Grünbaumian] |
x3/2x3/2o5/3o5/3*a5/2*c *b5/3*d - [Grünbaumian] x3/2o3/2x5/3o5/3*a5/2*c *b5/3*d - [Grünbaumian] x3/2o3/2o5/3x5/3*a5/2*c *b5/3*d - o3/2x3/2o5/3x5/3*a5/2*c *b5/3*d - x3/2x3/2x5/3o5/3*a5/2*c *b5/3*d - [Grünbaumian] x3/2x3/2o5/3x5/3*a5/2*c *b5/3*d - [Grünbaumian] x3/2o3/2x5/3x5/3*a5/2*c *b5/3*d - [Grünbaumian] x3/2x3/2x5/3x5/3*a5/2*c *b5/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3o5o5*a5/4*c *b5/3*d (µ=172) | o3o3/2o5/4o5*a5*c *b5/3*d (µ=308) | o3o3/2o5o5/4*a5*c *b5/2*d (µ=412) | |
quasiregulars |
x3o3o5o5*a5/4*c *b5/3*d - (contains "2gad") o3x3o5o5*a5/4*c *b5/3*d - (contains "2gike") o3o3o5x5*a5/4*c *b5/3*d - (contains "2gad") |
x3o3/2o5/4o5*a5*c *b5/3*d - (contains "2gad") o3x3/2o5/4o5*a5*c *b5/3*d - (contains "2gike") o3o3/2x5/4o5*a5*c *b5/3*d - (contains "2gad") o3o3/2o5/4x5*a5*c *b5/3*d - (contains "2gad") |
x3o3/2o5o5/4*a5*c *b5/2*d - (contains "2gad") o3x3/2o5o5/4*a5*c *b5/2*d - (contains "2gike") o3o3/2x5o5/4*a5*c *b5/2*d - (contains "2gad") o3o3/2o5x5/4*a5*c *b5/2*d - (contains "2gad") |
other Wythoffians |
x3x3o5o5*a5/4*c *b5/3*d - x3o3x5o5*a5/4*c *b5/3*d - [Grünbaumian] x3o3o5x5*a5/4*c *b5/3*d - o3x3o5x5*a5/4*c *b5/3*d - x3x3x5o5*a5/4*c *b5/3*d - [Grünbaumian] x3x3o5x5*a5/4*c *b5/3*d - x3o3x5x5*a5/4*c *b5/3*d - [Grünbaumian] x3x3x5x5*a5/4*c *b5/3*d - [Grünbaumian] |
x3x3/2o5/4o5*a5*c *b5/3*d - x3o3/2x5/4o5*a5*c *b5/3*d - x3o3/2o5/4x5*a5*c *b5/3*d - o3x3/2x5/4o5*a5*c *b5/3*d - [Grünbaumian] o3x3/2o5/4x5*a5*c *b5/3*d - o3o3/2x5/4x5*a5*c *b5/3*d - [Grünbaumian] x3x3/2x5/4o5*a5*c *b5/3*d - [Grünbaumian] x3x3/2o5/4x5*a5*c *b5/3*d - x3o3/2x5/4x5*a5*c *b5/3*d - [Grünbaumian] o3x3/2x5/4x5*a5*c *b5/3*d - [Grünbaumian] x3x3/2x5/4x5*a5*c *b5/3*d - [Grünbaumian] |
x3x3/2o5o5/4*a5*c *b5/2*d - x3o3/2x5o5/4*a5*c *b5/2*d - x3o3/2o5x5/4*a5*c *b5/2*d - [Grünbaumian] o3x3/2x5o5/4*a5*c *b5/2*d - [Grünbaumian] o3x3/2o5x5/4*a5*c *b5/2*d - [Grünbaumian] o3o3/2x5x5/4*a5*c *b5/2*d - x3x3/2x5o5/4*a5*c *b5/2*d - [Grünbaumian] x3x3/2o5x5/4*a5*c *b5/2*d - [Grünbaumian] x3o3/2x5x5/4*a5*c *b5/2*d - [Grünbaumian] o3x3/2x5x5/4*a5*c *b5/2*d - [Grünbaumian] x3x3/2x5x5/4*a5*c *b5/2*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3/2o3/2o5o5*a5/4*c *b5/2*d (µ=548) | o3o3o5/4o5/4*a5/4*c *b5/2*d (µ=1508) | o3/2o3/2o5/4o5/4*a5/4*c *b5/3*d (µ=3532) | |
quasiregulars |
x3/2o3/2o5o5*a5/4*c *b5/2*d - (contains "2gad") o3/2x3/2o5o5*a5/4*c *b5/2*d - (contains "2gike") o3/2o3/2o5x5*a5/4*c *b5/2*d - (contains "2gad") |
x3o3o5/4o5/4*a5/4*c *b5/2*d - (contains "2gad") o3x3o5/4o5/4*a5/4*c *b5/2*d - (contains "2gike") o3o3o5/4x5/4*a5/4*c *b5/2*d - (contains "2gad") |
x3/2o3/2o5/4o5/4*a5/4*c *b5/3*d - (contains "2gad") o3/2x3/2o5/4o5/4*a5/4*c *b5/3*d - (contains "2gike") o3/2o3/2o5/4x5/4*a5/4*c *b5/3*d - (contains "2gad") |
other Wythoffians |
x3/2x3/2o5o5*a5/4*c *b5/2*d - [Grünbaumian] x3/2o3/2x5o5*a5/4*c *b5/2*d - [Grünbaumian] x3/2o3/2o5x5*a5/4*c *b5/2*d - o3/2x3/2o5x5*a5/4*c *b5/2*d - [Grünbaumian] x3/2x3/2x5o5*a5/4*c *b5/2*d - [Grünbaumian] x3/2x3/2o5x5*a5/4*c *b5/2*d - [Grünbaumian] x3/2o3/2x5x5*a5/4*c *b5/2*d - [Grünbaumian] x3/2x3/2x5x5*a5/4*c *b5/2*d - [Grünbaumian] |
x3x3o5/4o5/4*a5/4*c *b5/2*d - x3o3x5/4o5/4*a5/4*c *b5/2*d - [Grünbaumian] x3o3o5/4x5/4*a5/4*c *b5/2*d - [Grünbaumian] o3x3o5/4x5/4*a5/4*c *b5/2*d - [Grünbaumian] x3x3x5/4o5/4*a5/4*c *b5/2*d - [Grünbaumian] x3x3o5/4x5/4*a5/4*c *b5/2*d - [Grünbaumian] x3o3x5/4x5/4*a5/4*c *b5/2*d - [Grünbaumian] x3x3x5/4x5/4*a5/4*c *b5/2*d - [Grünbaumian] |
x3/2x3/2o5/4o5/4*a5/4*c *b5/3*d - [Grünbaumian] x3/2o3/2x5/4o5/4*a5/4*c *b5/3*d - [Grünbaumian] x3/2o3/2o5/4x5/4*a5/4*c *b5/3*d - [Grünbaumian] o3/2x3/2o5/4x5/4*a5/4*c *b5/3*d - x3/2x3/2x5/4o5/4*a5/4*c *b5/3*d - [Grünbaumian] x3/2x3/2o5/4x5/4*a5/4*c *b5/3*d - [Grünbaumian] x3/2o3/2x5/4x5/4*a5/4*c *b5/3*d - [Grünbaumian] x3/2x3/2x5/4x5/4*a5/4*c *b5/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o3o5/3o5/3*a5/2*c *b5*d (µ=28) | o3o3o5/2o5/2*a5/2*c *b5/4*d (µ=212) | o3o3/2o5/2o5/3*a5/3*c *b5*d (µ=452) | |
quasiregulars |
x3o3o5/3o5/3*a5/2*c *b5*d - (contains "2sissid") o3x3o5/3o5/3*a5/2*c *b5*d - (contains "2ike") o3o3o5/3x5/3*a5/2*c *b5*d - (contains "2sissid") |
x3o3o5/2o5/2*a5/2*c *b5/4*d - (contains "2sissid") o3x3o5/2o5/2*a5/2*c *b5/4*d - (contains "2ike") o3o3o5/2x5/2*a5/2*c *b5/4*d - (contains "2sissid") |
x3o3/2o5/2o5/3*a5/3*c *b5*d - (contains "2sissid") o3x3/2o5/2o5/3*a5/3*c *b5*d - (contains "2ike") o3o3/2x5/2o5/3*a5/3*c *b5*d - (contains "2sissid") o3o3/2o5/2x5/3*a5/3*c *b5*d - (contains "2sissid") |
other Wythoffians |
x3x3o5/3o5/3*a5/2*c *b5*d - x3o3x5/3o5/3*a5/2*c *b5*d - [Grünbaumian] x3o3o5/3x5/3*a5/2*c *b5*d - o3x3o5/3x5/3*a5/2*c *b5*d - x3x3x5/3o5/3*a5/2*c *b5*d - [Grünbaumian] x3x3o5/3x5/3*a5/2*c *b5*d - x3o3x5/3x5/3*a5/2*c *b5*d - [Grünbaumian] x3x3x5/3x5/3*a5/2*c *b5*d - [Grünbaumian] |
x3x3o5/2o5/2*a5/2*c *b5/4*d - x3o3x5/2o5/2*a5/2*c *b5/4*d - [Grünbaumian] x3o3o5/2x5/2*a5/2*c *b5/4*d - [Grünbaumian] o3x3o5/2x5/2*a5/2*c *b5/4*d - [Grünbaumian] x3x3x5/2o5/2*a5/2*c *b5/4*d - [Grünbaumian] x3x3o5/2x5/2*a5/2*c *b5/4*d - [Grünbaumian] x3o3x5/2x5/2*a5/2*c *b5/4*d - [Grünbaumian] x3x3x5/2x5/2*a5/2*c *b5/4*d - [Grünbaumian] |
x3x3/2o5/2o5/3*a5/3*c *b5*d - x3o3/2x5/2o5/3*a5/3*c *b5*d - x3o3/2o5/2x5/3*a5/3*c *b5*d - o3x3/2x5/2o5/3*a5/3*c *b5*d - [Grünbaumian] o3x3/2o5/2x5/3*a5/3*c *b5*d - o3o3/2x5/2x5/3*a5/3*c *b5*d - [Grünbaumian] x3x3/2x5/2o5/3*a5/3*c *b5*d - [Grünbaumian] x3x3/2o5/2x5/3*a5/3*c *b5*d - x3o3/2x5/2x5/3*a5/3*c *b5*d - [Grünbaumian] o3x3/2x5/2x5/3*a5/3*c *b5*d - [Grünbaumian] x3x3/2x5/2x5/3*a5/3*c *b5*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3/2o3/2o5/2o5/2*a5/2*c *b5*d (µ=508) | o3o3/2o5/3o5/2*a5/3*c *b5/4*d (µ=1708) | o3/2o3/2o5/3o5/3*a5/2*c *b5/4*d (µ=2132) | |
quasiregulars |
x3/2o3/2o5/2o5/2*a5/2*c *b5*d - (contains "2sissid") o3/2x3/2o5/2o5/2*a5/2*c *b5*d - (contains "2ike") o3/2o3/2o5/2x5/2*a5/2*c *b5*d - (contains "2sissid") |
x3o3/2o5/3o5/2*a5/3*c *b5/4*d - (contains "2sissid") o3x3/2o5/3o5/2*a5/3*c *b5/4*d - (contains "2ike") o3o3/2x5/3o5/2*a5/3*c *b5/4*d - (contains "2sissid") o3o3/2o5/3x5/2*a5/3*c *b5/4*d - (contains "2sissid") |
x3/2o3/2o5/3o5/3*a5/2*c *b5/4*d - (contains "2sissid") o3/2x3/2o5/3o5/3*a5/2*c *b5/4*d - (contains "2ike") o3/2o3/2o5/3x5/3*a5/2*c *b5/4*d - (contains "2sissid") |
other Wythoffians |
x3/2x3/2o5/2o5/2*a5/2*c *b5*d - [Grünbaumian] x3/2o3/2x5/2o5/2*a5/2*c *b5*d - [Grünbaumian] x3/2o3/2o5/2x5/2*a5/2*c *b5*d - [Grünbaumian] o3/2x3/2o5/2x5/2*a5/2*c *b5*d - x3/2x3/2x5/2o5/2*a5/2*c *b5*d - [Grünbaumian] x3/2x3/2o5/2x5/2*a5/2*c *b5*d - [Grünbaumian] x3/2o3/2x5/2x5/2*a5/2*c *b5*d - [Grünbaumian] x3/2x3/2x5/2x5/2*a5/2*c *b5*d - [Grünbaumian] |
x3x3/2o5/3o5/2*a5/3*c *b5/4*d - x3o3/2x5/3o5/2*a5/3*c *b5/4*d - x3o3/2o5/3x5/2*a5/3*c *b5/4*d - [Grünbaumian] o3x3/2x5/3o5/2*a5/3*c *b5/4*d - [Grünbaumian] o3x3/2o5/3x5/2*a5/3*c *b5/4*d - [Grünbaumian] o3o3/2x5/3x5/2*a5/3*c *b5/4*d - x3x3/2x5/3o5/2*a5/3*c *b5/4*d - [Grünbaumian] x3x3/2o5/3x5/2*a5/3*c *b5/4*d - [Grünbaumian] x3o3/2x5/3x5/2*a5/3*c *b5/4*d - [Grünbaumian] o3x3/2x5/3x5/2*a5/3*c *b5/4*d - [Grünbaumian] x3x3/2x5/3x5/2*a5/3*c *b5/4*d - [Grünbaumian] |
x3/2x3/2o5/3o5/3*a5/2*c *b5/4*d - [Grünbaumian] x3/2o3/2x5/3o5/3*a5/2*c *b5/4*d - [Grünbaumian] x3/2o3/2o5/3x5/3*a5/2*c *b5/4*d - o3/2x3/2o5/3x5/3*a5/2*c *b5/4*d - [Grünbaumian] x3/2x3/2x5/3o5/3*a5/2*c *b5/4*d - [Grünbaumian] x3/2x3/2o5/3x5/3*a5/2*c *b5/4*d - [Grünbaumian] x3/2o3/2x5/3x5/3*a5/2*c *b5/4*d - [Grünbaumian] x3/2x3/2x5/3x5/3*a5/2*c *b5/4*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3/2o5o3/2o5*a5/2*c *b5*d (µ=32) | o3o5o3/2o5/4*a5/3*c *b5*d (µ=208) | o3o5o3o5*a5/3*c *b5/4*d (µ=272) | |
quasiregulars |
x3/2o5o3/2o5*a5/2*c *b5*d - (contains gacid) o3/2x5o3/2o5*a5/2*c *b5*d - (contains "2doe") |
x3o5o3/2o5/4*a5/3*c *b5*d - (contains gacid) o3x5o3/2o5/4*a5/3*c *b5*d - (contains "2doe") o3o5x3/2o5/4*a5/3*c *b5*d - (contains gacid) o3o5o3/2x5/4*a5/3*c *b5*d - (contains "2doe") |
x3o5o3o5*a5/3*c *b5/4*d - (contains gacid) o3x5o3o5*a5/3*c *b5/4*d - (contains "2doe") |
other Wythoffians |
x3/2x5o3/2o5*a5/2*c *b5*d - [Grünbaumian] x3/2o5x3/2o5*a5/2*c *b5*d - [Grünbaumian] x3/2o5o3/2x5*a5/2*c *b5*d - o3/2x5o3/2x5*a5/2*c *b5*d - x3/2x5x3/2o5*a5/2*c *b5*d - [Grünbaumian] x3/2x5o3/2x5*a5/2*c *b5*d - [Grünbaumian] x3/2x5x3/2x5*a5/2*c *b5*d - [Grünbaumian] |
x3x5o3/2o5/4*a5/3*c *b5*d - x3o5x3/2o5/4*a5/3*c *b5*d - x3o5o3/2x5/4*a5/3*c *b5*d - [Grünbaumian] o3x5x3/2o5/4*a5/3*c *b5*d - o3x5o3/2x5/4*a5/3*c *b5*d - o3o5x3/2x5/4*a5/3*c *b5*d - [Grünbaumian] x3x5x3/2o5/4*a5/3*c *b5*d - x3x5o3/2x5/4*a5/3*c *b5*d - [Grünbaumian] x3o5x3/2x5/4*a5/3*c *b5*d - [Grünbaumian] o3x5x3/2x5/4*a5/3*c *b5*d - [Grünbaumian] x3x5x3/2x5/4*a5/3*c *b5*d - [Grünbaumian] |
x3x5o3o5*a5/3*c *b5/4*d - x3o5x3o5*a5/3*c *b5/4*d - x3o5o3x5*a5/3*c *b5/4*d - o3x5o3x5*a5/3*c *b5/4*d - [Grünbaumian] x3x5x3o5*a5/3*c *b5/4*d - x3x5o3x5*a5/3*c *b5/4*d - [Grünbaumian] x3x5x3x5*a5/3*c *b5/4*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o5/4o3/2o5*a5/2*c *b5/4*d (µ=928) | o3o5/4o3o5/4*a5/2*c *b5*d (µ=992) | o3/2o5/4o3/2o5/4*a5/3*c *b5/4*d (µ=3632) | |
quasiregulars |
x3o5/4o3/2o5*a5/2*c *b5/4*d - (contains gacid) o3x5/4o3/2o5*a5/2*c *b5/4*d - (contains "2doe") o3o5/4x3/2o5*a5/2*c *b5/4*d - (contains gacid) o3o5/4o3/2x5*a5/2*c *b5/4*d - (contains "2doe") |
x3o5/4o3o5/4*a5/2*c *b5*d - (contains gacid) o3x5/4o3o5/4*a5/2*c *b5*d - (contains "2doe") |
x3/2o5/4o3/2o5/4*a5/3*c *b5/4*d - (contains gacid) o3/2x5/4o3/2o5/4*a5/3*c *b5/4*d - (contains "2doe") |
other Wythoffians |
x3x5/4o3/2o5*a5/2*c *b5/4*d - x3o5/4x3/2o5*a5/2*c *b5/4*d - [Grünbaumian] x3o5/4o3/2x5*a5/2*c *b5/4*d - o3x5/4x3/2o5*a5/2*c *b5/4*d - [Grünbaumian] o3x5/4o3/2x5*a5/2*c *b5/4*d - [Grünbaumian] o3o5/4x3/2x5*a5/2*c *b5/4*d - [Grünbaumian] x3x5/4x3/2o5*a5/2*c *b5/4*d - [Grünbaumian] x3x5/4o3/2x5*a5/2*c *b5/4*d - [Grünbaumian] x3o5/4x3/2x5*a5/2*c *b5/4*d - [Grünbaumian] o3x5/4x3/2x5*a5/2*c *b5/4*d - [Grünbaumian] x3x5/4x3/2x5*a5/2*c *b5/4*d - [Grünbaumian] |
x3x5/4o3o5/4*a5/2*c *b5*d - x3o5/4x3o5/4*a5/2*c *b5*d - [Grünbaumian] x3o5/4o3x5/4*a5/2*c *b5*d - [Grünbaumian] o3x5/4o3x5/4*a5/2*c *b5*d - x3x5/4x3o5/4*a5/2*c *b5*d - [Grünbaumian] x3x5/4o3x5/4*a5/2*c *b5*d - [Grünbaumian] x3x5/4x3x5/4*a5/2*c *b5*d - [Grünbaumian] |
x3/2x5/4o3/2o5/4*a5/3*c *b5/4*d - [Grünbaumian] x3/2o5/4x3/2o5/4*a5/3*c *b5/4*d - x3/2o5/4o3/2x5/4*a5/3*c *b5/4*d - [Grünbaumian] o3/2x5/4o3/2x5/4*a5/3*c *b5/4*d - [Grünbaumian] x3/2x5/4x3/2o5/4*a5/3*c *b5/4*d - [Grünbaumian] x3/2x5/4o3/2x5/4*a5/3*c *b5/4*d - [Grünbaumian] x3/2x5/4x3/2x5/4*a5/3*c *b5/4*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o5/3o3o5/3*a5*c *b5/2*d (µ=112) | o3o5/3o3/2o5/2*a5*c *b5/3*d (µ=368) | o3/2o5/2o3/2o5/2*a5*c *b5/2*d (µ=592) | |
quasiregulars |
x3o5/3o3o5/3*a5*c *b5/2*d - (contains cid) o3x5/3o3o5/3*a5*c *b5/2*d - (contains "2gissid") |
x3o5/3o3/2o5/2*a5*c *b5/3*d - (contains cid) o3x5/3o3/2o5/2*a5*c *b5/3*d - (contains "2gissid") o3o5/3x3/2o5/2*a5*c *b5/3*d - (contains cid) o3o5/3o3/2x5/2*a5*c *b5/3*d - (contains "2gissid") |
x3/2o5/2o3/2o5/2*a5*c *b5/2*d - (contains cid) o3/2x5/2o3/2o5/2*a5*c *b5/2*d - (contains "2gissid") |
other Wythoffians |
x3x5/3o3o5/3*a5*c *b5/2*d - x3o5/3x3o5/3*a5*c *b5/2*d - x3o5/3o3x5/3*a5*c *b5/2*d - o3x5/3o3x5/3*a5*c *b5/2*d - [Grünbaumian] x3x5/3x3o5/3*a5*c *b5/2*d - x3x5/3o3x5/3*a5*c *b5/2*d - [Grünbaumian] x3x5/3x3x5/3*a5*c *b5/2*d - [Grünbaumian] |
x3x5/3o3/2o5/2*a5*c *b5/3*d - x3o5/3x3/2o5/2*a5*c *b5/3*d - x3o5/3o3/2x5/2*a5*c *b5/3*d - [Grünbaumian] o3x5/3x3/2o5/2*a5*c *b5/3*d - o3x5/3o3/2x5/2*a5*c *b5/3*d - o3o5/3x3/2x5/2*a5*c *b5/3*d - [Grünbaumian] x3x5/3x3/2o5/2*a5*c *b5/3*d - x3x5/3o3/2x5/2*a5*c *b5/3*d - [Grünbaumian] x3o5/3x3/2x5/2*a5*c *b5/3*d - [Grünbaumian] o3x5/3x3/2x5/2*a5*c *b5/3*d - [Grünbaumian] x3x5/3x3/2x5/2*a5*c *b5/3*d - [Grünbaumian] |
x3/2x5/2o3/2o5/2*a5*c *b5/2*d - [Grünbaumian] x3/2o5/2x3/2o5/2*a5*c *b5/2*d - x3/2o5/2o3/2x5/2*a5*c *b5/2*d - [Grünbaumian] o3/2x5/2o3/2x5/2*a5*c *b5/2*d - [Grünbaumian] x3/2x5/2x3/2o5/2*a5*c *b5/2*d - [Grünbaumian] x3/2x5/2o3/2x5/2*a5*c *b5/2*d - [Grünbaumian] x3/2x5/2x3/2x5/2*a5*c *b5/2*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o3o5/2o3o5/2*a5/4*c *b5/3*d (µ=832) | o3o5/2o3/2o5/3*a5/4*c *b5/2*d (µ=1088) | o3/2o5/3o3/2o5/3*a5/4*c *b5/3*d (µ=2752) | |
quasiregulars |
x3o5/2o3o5/2*a5/4*c *b5/3*d - (contains cid) o3x5/2o3o5/2*a5/4*c *b5/3*d - (contains "2gissid") |
x3o5/2o3/2o5/3*a5/4*c *b5/2*d - (contains cid) o3x5/2o3/2o5/3*a5/4*c *b5/2*d - (contains "2gissid") o3o5/2x3/2o5/3*a5/4*c *b5/2*d - (contains cid) o3o5/2o3/2x5/3*a5/4*c *b5/2*d - (contains "2gissid") |
x3/2o5/3o3/2o5/3*a5/4*c *b5/3*d - (contains cid) o3/2x5/3o3/2o5/3*a5/4*c *b5/3*d - (contains "2gissid") |
other Wythoffians |
x3x5/2o3o5/2*a5/4*c *b5/3*d - x3o5/2x3o5/2*a5/4*c *b5/3*d - [Grünbaumian] x3o5/2o3x5/2*a5/4*c *b5/3*d - [Grünbaumian] o3x5/2o3x5/2*a5/4*c *b5/3*d - x3x5/2x3o5/2*a5/4*c *b5/3*d - [Grünbaumian] x3o5/2x3x5/2*a5/4*c *b5/3*d - [Grünbaumian] x3x5/2x3x5/2*a5/4*c *b5/3*d - [Grünbaumian] |
x3x5/2o3/2o5/3*a5/4*c *b5/2*d - x3o5/2x3/2o5/3*a5/4*c *b5/2*d - [Grünbaumian] x3o5/2o3/2x5/3*a5/4*c *b5/2*d - o3x5/2x3/2o5/3*a5/4*c *b5/2*d - [Grünbaumian] o3x5/2o3/2x5/3*a5/4*c *b5/2*d - [Grünbaumian] o3o5/2x3/2x5/3*a5/4*c *b5/2*d - [Grünbaumian] x3x5/2x3/2o5/3*a5/4*c *b5/2*d - [Grünbaumian] x3x5/2o3/2x5/3*a5/4*c *b5/2*d - [Grünbaumian] x3o5/2x3/2x5/3*a5/4*c *b5/2*d - [Grünbaumian] o3x5/2x3/2x5/3*a5/4*c *b5/2*d - [Grünbaumian] x3x5/2x3/2x5/3*a5/4*c *b5/2*d - [Grünbaumian] |
x3/2x5/3o3/2o5/3*a5/4*c *b5/3*d - [Grünbaumian] x3/2o5/3x3/2o5/3*a5/4*c *b5/3*d - [Grünbaumian] x3/2o5/3o3/2x5/3*a5/4*c *b5/3*d - o3/2x5/3o3/2x5/3*a5/4*c *b5/3*d - x3/2x5/3x3/2o5/3*a5/4*c *b5/3*d - [Grünbaumian] x3/2x5/3o3/2x5/3*a5/4*c *b5/3*d - [Grünbaumian] x3/2o5/3x3/2x5/3*a5/4*c *b5/3*d - [Grünbaumian] x3/2x5/3x3/2x5/3*a5/4*c *b5/3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o5o5o5/3o5/3*a3/2*c *b3*d (µ=60) | o5o5o5/2o5/2*a3/2*c *b3/2*d (µ=180) | o5o5/4o5/2o5/3*a3*c *b3*d (µ=420) | |
quasiregulars |
x5o5o5/3o5/3*a3/2*c *b3*d - o5x5o5/3o5/3*a3/2*c *b3*d - o5o5o5/3x5/3*a3/2*c *b3*d - |
x5o5o5/2o5/2*a3/2*c *b3/2*d - o5x5o5/2o5/2*a3/2*c *b3/2*d - o5o5o5/2x5/2*a3/2*c *b3/2*d - |
x5o5/4o5/2o5/3*a3*c *b3*d - o5x5/4o5/2o5/3*a3*c *b3*d - o5o5/4x5/2o5/3*a3*c *b3*d - o5o5/4o5/2x5/3*a3*c *b3*d - |
other Wythoffians |
x5x5o5/3o5/3*a3/2*c *b3*d - x5o5x5/3o5/3*a3/2*c *b3*d - [Grünbaumian] x5o5o5/3x5/3*a3/2*c *b3*d - o5x5o5/3x5/3*a3/2*c *b3*d - x5x5x5/3o5/3*a3/2*c *b3*d - [Grünbaumian] x5x5o5/3x5/3*a3/2*c *b3*d - kevuthi x5o5x5/3x5/3*a3/2*c *b3*d - [Grünbaumian] x5x5x5/3x5/3*a3/2*c *b3*d - [Grünbaumian] |
x5x5o5/2o5/2*a3/2*c *b3/2*d - x5o5x5/2o5/2*a3/2*c *b3/2*d - [Grünbaumian] x5o5o5/2x5/2*a3/2*c *b3/2*d - [Grünbaumian] o5x5o5/2x5/2*a3/2*c *b3/2*d - [Grünbaumian] x5x5x5/2o5/2*a3/2*c *b3/2*d - [Grünbaumian] x5x5o5/2x5/2*a3/2*c *b3/2*d - [Grünbaumian] x5o5x5/2x5/2*a3/2*c *b3/2*d - [Grünbaumian] x5x5x5/2x5/2*a3/2*c *b3/2*d - [Grünbaumian] |
x5x5/4o5/2o5/3*a3*c *b3*d - x5o5/4x5/2o5/3*a3*c *b3*d - x5o5/4o5/2x5/3*a3*c *b3*d - o5x5/4x5/2o5/3*a3*c *b3*d - [Grünbaumian] o5x5/4o5/2x5/3*a3*c *b3*d - o5o5/4x5/2x5/3*a3*c *b3*d - [Grünbaumian] x5x5/4x5/2o5/3*a3*c *b3*d - [Grünbaumian] x5x5/4o5/2x5/3*a3*c *b3*d - x5o5/4x5/2x5/3*a3*c *b3*d - [Grünbaumian] o5x5/4x5/2x5/3*a3*c *b3*d - [Grünbaumian] x5x5/4x5/2x5/3*a3*c *b3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o5o5/4o5/3o5/2*a3*c *b3/2*d (µ=780) | o5/4o5/4o5/2o5/2*a3/2*c *b3*d (µ=1500) | o5/4o5/4o5/3o5/3*a3/2*c *b3/2*d (µ=3060) | |
quasiregulars |
x5o5/4o5/3o5/2*a3*c *b3/2*d - o5x5/4o5/3o5/2*a3*c *b3/2*d - o5o5/4x5/3o5/2*a3*c *b3/2*d - o5o5/4o5/3x5/2*a3*c *b3/2*d - |
x5/4o5/4o5/2o5/2*a3/2*c *b3*d - o5/4x5/4o5/2o5/2*a3/2*c *b3*d - o5/4o5/4o5/2x5/2*a3/2*c *b3*d - |
x5/4o5/4o5/3o5/3*a3/2*c *b3/2*d - o5/4x5/4o5/3o5/3*a3/2*c *b3/2*d - o5/4o5/4o5/3x5/3*a3/2*c *b3/2*d - |
other Wythoffians |
x5x5/4o5/3o5/2*a3*c *b3/2*d - x5o5/4x5/3o5/2*a3*c *b3/2*d - x5o5/4o5/3x5/2*a3*c *b3/2*d - [Grünbaumian] o5x5/4x5/3o5/2*a3*c *b3/2*d - [Grünbaumian] o5x5/4o5/3x5/2*a3*c *b3/2*d - [Grünbaumian] o5o5/4x5/3x5/2*a3*c *b3/2*d - x5x5/4x5/3o5/2*a3*c *b3/2*d - [Grünbaumian] x5x5/4o5/3x5/2*a3*c *b3/2*d - [Grünbaumian] x5o5/4x5/3x5/2*a3*c *b3/2*d - [Grünbaumian] o5x5/4x5/3x5/2*a3*c *b3/2*d - [Grünbaumian] x5x5/4x5/3x5/2*a3*c *b3/2*d - [Grünbaumian] |
x5/4x5/4o5/2o5/2*a3/2*c *b3*d - [Grünbaumian] x5/4o5/4x5/2o5/2*a3/2*c *b3*d - [Grünbaumian] x5/4o5/4o5/2x5/2*a3/2*c *b3*d - [Grünbaumian] o5/4x5/4o5/2x5/2*a3/2*c *b3*d - x5/4x5/4x5/2o5/2*a3/2*c *b3*d - [Grünbaumian] x5/4x5/4o5/2x5/2*a3/2*c *b3*d - [Grünbaumian] x5/4o5/4x5/2x5/2*a3/2*c *b3*d - [Grünbaumian] x5/4x5/4x5/2x5/2*a3/2*c *b3*d - [Grünbaumian] |
x5/4x5/4o5/3o5/3*a3/2*c *b3/2*d - [Grünbaumian] x5/4o5/4x5/3o5/3*a3/2*c *b3/2*d - [Grünbaumian] x5/4o5/4o5/3x5/3*a3/2*c *b3/2*d - o5/4x5/4o5/3x5/3*a3/2*c *b3/2*d - [Grünbaumian] x5/4x5/4x5/3o5/3*a3/2*c *b3/2*d - [Grünbaumian] x5/4x5/4o5/3x5/3*a3/2*c *b3/2*d - [Grünbaumian] x5/4o5/4x5/3x5/3*a3/2*c *b3/2*d - [Grünbaumian] x5/4x5/4x5/3x5/3*a3/2*c *b3/2*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o5o5o5o5*a5/4*c *b3/2*d (µ=16) | o5o5/4o5/4o5*a5*c *b3/2*d (µ=224) | o5o5/4o5o5/4*a5*c *b3*d (µ=496) | |
quasiregulars |
x5o5o5o5*a5/4*c *b3/2*d - o5x5o5o5*a5/4*c *b3/2*d - |
x5o5/4o5/4o5*a5*c *b3/2*d - o5x5/4o5/4o5*a5*c *b3/2*d - o5o5/4x5/4o5*a5*c *b3/2*d - |
x5o5/4o5o5/4*a5*c *b3*d - o5x5/4o5o5/4*a5*c *b3*d - |
other Wythoffians |
x5x5o5o5*a5/4*c *b3/2*d - x5o5x5o5*a5/4*c *b3/2*d - [Grünbaumian] o5x5o5x5*a5/4*c *b3/2*d - [Grünbaumian] x5x5x5o5*a5/4*c *b3/2*d - [Grünbaumian] x5x5o5x5*a5/4*c *b3/2*d - [Grünbaumian] x5x5x5x5*a5/4*c *b3/2*d - [Grünbaumian] |
x5x5/4o5/4o5*a5*c *b3/2*d - x5o5/4x5/4o5*a5*c *b3/2*d - o5x5/4x5/4o5*a5*c *b3/2*d - [Grünbaumian] o5x5/4o5/4x5*a5*c *b3/2*d - [Grünbaumian] x5x5/4x5/4o5*a5*c *b3/2*d - [Grünbaumian] x5x5/4o5/4x5*a5*c *b3/2*d - [Grünbaumian] o5x5/4x5/4x5*a5*c *b3/2*d - [Grünbaumian] x5x5/4x5/4x5*a5*c *b3/2*d - [Grünbaumian] |
x5x5/4o5o5/4*a5*c *b3*d - x5o5/4x5o5/4*a5*c *b3*d - x5o5/4o5x5/4*a5*c *b3*d - [Grünbaumian] o5x5/4o5x5/4*a5*c *b3*d - x5x5/4x5o5/4*a5*c *b3*d - [Grünbaumian] x5x5/4o5x5/4*a5*c *b3*d - [Grünbaumian] x5x5/4x5x5/4*a5*c *b3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o5o5o5/4o5/4*a5/4*c *b3*d (µ=704) | o5/4o5/4o5/4o5/4*a5/4*c *b3/2*d (µ=4336) | ||
quasiregulars |
x5o5o5/4o5/4*a5/4*c *b3*d - o5x5o5/4o5/4*a5/4*c *b3*d - o5o5o5/4x5/4*a5/4*c *b3*d - |
x5/4o5/4o5/4o5/4*a5/4*c *b3/2*d - o5/4x5/4o5/4o5/4*a5/4*c *b3/2*d - | |
other Wythoffians |
x5x5o5/4o5/4*a5/4*c *b3*d - x5o5x5/4o5/4*a5/4*c *b3*d - [Grünbaumian] x5o5o5/4x5/4*a5/4*c *b3*d - [Grünbaumian] o5x5o5/4x5/4*a5/4*c *b3*d - x5x5x5/4o5/4*a5/4*c *b3*d - [Grünbaumian] x5x5o5/4x5/4*a5/4*c *b3*d - [Grünbaumian] x5o5x5/4x5/4*a5/4*c *b3*d - [Grünbaumian] x5x5x5/4x5/4*a5/4*c *b3*d - [Grünbaumian] |
x5/4x5/4o5/4o5/4*a5/4*c *b3/2*d - [Grünbaumian] x5/4o5/4x5/4o5/4*a5/4*c *b3/2*d - [Grünbaumian] o5/4x5/4o5/4x5/4*a5/4*c *b3/2*d - [Grünbaumian] x5/4x5/4x5/4o5/4*a5/4*c *b3/2*d - [Grünbaumian] x5/4x5/4o5/4x5/4*a5/4*c *b3/2*d - [Grünbaumian] x5/4x5/4x5/4x5/4*a5/4*c *b3/2*d - [Grünbaumian] | |
(partial) snubs and holosnubs |
... |
... |
o5/2o5/2o5/2o5/2*a5/2*c *b3/2*d (µ=304) | o5/2o5/2o5/3o5/3*a5/2*c *b3*d (µ=416) | o5/2o5/3o5/2o5/3*a5/3*c *b3*d (µ=784) | |
quasiregulars |
x5/2o5/2o5/2o5/2*a5/2*c *b3/2*d - o5/2x5/2o5/2o5/2*a5/2*c *b3/2*d - |
x5/2o5/2o5/3o5/3*a5/2*c *b3*d - o5/2x5/2o5/3o5/3*a5/2*c *b3*d - o5/2o5/2o5/3x5/3*a5/2*c *b3*d - |
x5/2o5/3o5/2o5/3*a5/3*c *b3*d - o5/2x5/3o5/2o5/3*a5/3*c *b3*d - |
other Wythoffians |
x5/2x5/2o5/2o5/2*a5/2*c *b3/2*d - [Grünbaumian] x5/2o5/2x5/2o5/2*a5/2*c *b3/2*d - [Grünbaumian] o5/2x5/2o5/2x5/2*a5/2*c *b3/2*d - [Grünbaumian] x5/2x5/2x5/2o5/2*a5/2*c *b3/2*d - [Grünbaumian] x5/2x5/2o5/2x5/2*a5/2*c *b3/2*d - [Grünbaumian] x5/2x5/2x5/2x5/2*a5/2*c *b3/2*d - [Grünbaumian] |
x5/2x5/2o5/3o5/3*a5/2*c *b3*d - [Grünbaumian] x5/2o5/2x5/3o5/3*a5/2*c *b3*d - [Grünbaumian] x5/2o5/2o5/3x5/3*a5/2*c *b3*d - o5/2x5/2o5/3x5/3*a5/2*c *b3*d - x5/2x5/2x5/3o5/3*a5/2*c *b3*d - [Grünbaumian] x5/2x5/2o5/3x5/3*a5/2*c *b3*d - [Grünbaumian] x5/2o5/2x5/3x5/3*a5/2*c *b3*d - [Grünbaumian] x5/2x5/2x5/3x5/3*a5/2*c *b3*d - [Grünbaumian] |
x5/2x5/3o5/2o5/3*a5/3*c *b3*d - [Grünbaumian] x5/2o5/3x5/2o5/3*a5/3*c *b3*d - x5/2o5/3o5/2x5/3*a5/3*c *b3*d - o5/2x5/3o5/2x5/3*a5/3*c *b3*d - x5/2x5/3x5/2o5/3*a5/3*c *b3*d - [Grünbaumian] x5/2x5/3o5/2x5/3*a5/3*c *b3*d - [Grünbaumian] x5/2x5/3x5/2x5/3*a5/3*c *b3*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o5/2o5/3o5/3o5/2*a5/3*c *b3/2*d (µ=1376) | o5/3o5/3o5/3o5/3*a5/2*c *b3/2*d (µ=1744) | ||
quasiregulars |
x5/2o5/3o5/3o5/2*a5/3*c *b3/2*d - o5/2x5/3o5/3o5/2*a5/3*c *b3/2*d - o5/2o5/3x5/3o5/2*a5/3*c *b3/2*d - |
x5/3o5/3o5/3o5/3*a5/2*c *b3/2*d - o5/3x5/3o5/3o5/3*a5/2*c *b3/2*d - | |
other Wythoffians |
x5/2x5/3o5/3o5/2*a5/3*c *b3/2*d - [Grünbaumian] x5/2o5/3x5/3o5/2*a5/3*c *b3/2*d - o5/2x5/3x5/3o5/2*a5/3*c *b3/2*d - o5/2x5/3o5/3x5/2*a5/3*c *b3/2*d - [Grünbaumian] x5/2x5/3x5/3o5/2*a5/3*c *b3/2*d - [Grünbaumian] x5/2x5/3o5/3x5/2*a5/3*c *b3/2*d - [Grünbaumian] o5/2x5/3x5/3x5/2*a5/3*c *b3/2*d - [Grünbaumian] x5/2x5/3x5/3x5/2*a5/3*c *b3/2*d - [Grünbaumian] |
x5/3x5/3o5/3o5/3*a5/2*c *b3/2*d - x5/3o5/3x5/3o5/3*a5/2*c *b3/2*d - [Grünbaumian] o5/3x5/3o5/3x5/3*a5/2*c *b3/2*d - [Grünbaumian] x5/3x5/3x5/3o5/3*a5/2*c *b3/2*d - [Grünbaumian] x5/3x5/3o5/3x5/3*a5/2*c *b3/2*d - [Grünbaumian] x5/3x5/3x5/3x5/3*a5/2*c *b3/2*d - [Grünbaumian] | |
(partial) snubs and holosnubs |
... |
... |
o5o5o5o5*a5/4*c *b5/4*d (µ=264) | o5o5o5/4o5/4*a5/4*c *b5*d (µ=456) | o5/4o5/4o5/4o5/4*a5/4*c *b5/4*d (µ=4584) | |
quasiregulars |
x5o5o5o5*a5/4*c *b5/4*d - |
x5o5o5/4o5/4*a5/4*c *b5*d - o5x5o5/4o5/4*a5/4*c *b5*d - |
x5/4o5/4o5/4o5/4*a5/4*c *b5/4*d - |
other Wythoffians |
x5x5o5o5*a5/4*c *b5/4*d - x5o5x5o5*a5/4*c *b5/4*d - [Grünbaumian] x5x5x5o5*a5/4*c *b5/4*d - [Grünbaumian] x5x5x5x5*a5/4*c *b5/4*d - [Grünbaumian] |
x5x5o5/4o5/4*a5/4*c *b5*d - x5o5x5/4o5/4*a5/4*c *b5*d - [Grünbaumian] x5x5x5/4o5/4*a5/4*c *b5*d - [Grünbaumian] x5o5x5/4x5/4*a5/4*c *b5*d - [Grünbaumian] x5x5x5/4x5/4*a5/4*c *b5*d - [Grünbaumian] |
x5/4x5/4o5/4o5/4*a5/4*c *b5/4*d - [Grünbaumian] x5/4x5/4x5/4o5/4*a5/4*c *b5/4*d - [Grünbaumian] x5/4x5/4x5/4x5/4*a5/4*c *b5/4*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
o5/2o5/2o5/2o5/2*a5/2*c *b5/2*d (µ=24) | o5/2o5/2o5/3o5/3*a5/2*c *b5/3*d (µ=696) | o5/3o5/3o5/3o5/3*a5/2*c *b5/2*d (µ=1464) | |
quasiregulars |
x5/2o5/2o5/2o5/2*a5/2*c *b5/2*d - "6sishi" |
x5/2o5/2o5/3o5/3*a5/2*c *b5/3*d - o5/2o5/2o5/3x5/3*a5/2*c *b5/3*d - "6sishi" |
x5/3o5/3o5/3o5/3*a5/2*c *b5/2*d - |
other Wythoffians |
x5/2x5/2o5/2o5/2*a5/2*c *b5/2*d - [Grünbaumian] x5/2x5/2x5/2o5/2*a5/2*c *b5/2*d - [Grünbaumian] x5/2x5/2x5/2x5/2*a5/2*c *b5/2*d - [Grünbaumian] |
x5/2x5/2o5/3o5/3*a5/2*c *b5/3*d - [Grünbaumian] x5/2o5/2o5/3x5/3*a5/2*c *b5/3*d - x5/2x5/2x5/3o5/3*a5/2*c *b5/3*d - [Grünbaumian] x5/2x5/2o5/3x5/3*a5/2*c *b5/3*d - [Grünbaumian] x5/2x5/2x5/3x5/3*a5/2*c *b5/3*d - [Grünbaumian] |
x5/3x5/3o5/3o5/3*a5/2*c *b5/2*d - x5/3o5/3x5/3o5/3*a5/2*c *b5/2*d - [Grünbaumian] x5/3x5/3x5/3o5/3*a5/2*c *b5/2*d - [Grünbaumian] x5/3x5/3x5/3x5/3*a5/2*c *b5/2*d - [Grünbaumian] |
(partial) snubs and holosnubs |
... |
... |
... |
© 2004-2024 | top of page |