Site Map Polytopes Dynkin Diagrams Vertex Figures, etc. Incidence Matrices Index

---- 4D ----

This page is available sorted by point-group symmetry (below)
or by complexity (only including starry cases for quasiregular linear diagrams)
or by similarity.


Terse Overview

Indepted to the mere quantity of cases the following overview table links to additional pages too; only parts are listed in details below.

Linear Dynkin Graphs Tridental Dynkin Graphs Loop-n-Tail Dynkin Graphs Loop Dynkin Graphs Two-Loop Dynkin Graphs Simplical Dynkin Graphs Others



  o-P-o-Q-o-R-o  



o-P-o-Q-o *b-R-o  =

  o_
     -P_
         >o---R---o  
     _Q-
  o-
o-P-o-Q-o-R-o-S-*b  =

  o_
  |  -Q_
  R      >o---P---o
  |  _S-
  o-
o-P-o-Q-o-R-o-S-*a  =

  o---P---o
  |       |
  S       Q
  |       |
  o---R---o
o-P-o-Q-o-R-o-S-*a-T-*c  =

         _o_
     _P-  |  -S_
  o<      T      >o
     -Q_  |  _R-
         -o-
o-P-o-Q-o-R-o-S-*a-T-*c  *b-U-*d  =

        o
      / T \
     P _o_ S
   /_Q     R_\
  o-----U-----o

In the following symmetry listings "etc." means replacments according to 33/2, to 44/3, to 55/4, or to 5/25/3.

Polychora with Grünbaumian elements so far are not investigated any further. Those are Grünbaumian a priori, usually because of some subgraph -x-n/d-x-, where d is even. Others, which come out as being Grünbaumian a posteriori will be given none the less.

*) not even a scaliform representation does exist, just occures as pure faceting
**) not uniform, but at least scaliform



two-loop ones
o-P-o-Q-o-R-o-S-*a-T-*c   =

         _o_
     _P-  |  -S_
  o<      T      >o
     -Q_  |  _R-
         -o-

Demi-Tesseractic ("demi-tessic") Symmetries   (up)

  o3o3o3o3*a3/2*c (µ=2) o3o3/2o3/2o3*a3*c (µ=6) o3o3/2o3o3/2*a3*c (µ=10)
quasiregulars
x3o3o3o3*a3/2*c - (contains "2tet")
o3x3o3o3*a3/2*c - (contains "2tet")
x3o3/2o3/2o3*a3*c - (contains "2tet")
o3x3/2o3/2o3*a3*c - (contains "2tet")
o3o3/2x3/2o3*a3*c - (contains "2tet")
x3o3/2o3o3/2*a3*c - (contains "2tet")
o3x3/2o3o3/2*a3*c - (contains "2tet")
other
Wythoffians
x3x3o3o3*a3/2*c - (contains "2tet")
x3o3x3o3*a3/2*c - [Grünbaumian]
o3x3o3x3*a3/2*c -
x3x3x3o3*a3/2*c - [Grünbaumian]
x3x3o3x3*a3/2*c - rawvhitto
x3x3x3x3*a3/2*c - [Grünbaumian]
x3x3/2o3/2o3*a3*c - (contains "2tet")
x3o3/2x3/2o3*a3*c - "2oh"
o3x3/2x3/2o3*a3*c - [Grünbaumian]
o3x3/2o3/2x3*a3*c -
x3x3/2x3/2o3*a3*c - [Grünbaumian]
x3x3/2o3/2x3*a3*c - rawvhitto
o3x3/2x3/2x3*a3*c - [Grünbaumian]
x3x3/2x3/2x3*a3*c - [Grünbaumian]
x3x3/2o3o3/2*a3*c - (contains "2tet")
x3o3/2x3o3/2*a3*c - "2oh"
o3x3/2x3o3/2*a3*c - [Grünbaumian]
o3x3/2o3x3/2*a3*c -
x3x3/2x3o3/2*a3*c - [Grünbaumian]
x3x3/2o3x3/2*a3*c -
x3x3/2x3x3/2*a3*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o3o3/2o3/2*a3/2*c (µ=14) o3/2o3/2o3/2o3/2*a3/2*c (µ=34)  
quasiregulars
x3o3o3/2o3/2*a3/2*c - (contains "2tet")
o3x3o3/2o3/2*a3/2*c - (contains "2tet")
o3o3o3/2x3/2*a3/2*c - (contains "2tet")
x3/2o3/2o3/2o3/2*a3/2*c - (contains "2tet")
o3/2x3/2o3/2o3/2*a3/2*c - (contains "2tet")
 
other
Wythoffians
x3x3o3/2o3/2*a3/2*c - (contains "2tet")
x3o3x3/2o3/2*a3/2*c - [Grünbaumian]
x3o3o3/2x3/2*a3/2*c - [Grünbaumian]
o3x3o3/2x3/2*a3/2*c -
x3x3x3/2o3/2*a3/2*c - [Grünbaumian]
x3x3o3/2x3/2*a3/2*c - [Grünbaumian]
x3o3x3/2x3/2*a3/2*c - [Grünbaumian]
x3x3x3/2x3/2*a3/2*c - [Grünbaumian]
x3/2x3/2o3/2o3/2*a3/2*c - [Grünbaumian]
x3/2o3/2x3/2o3/2*a3/2*c - [Grünbaumian]
o3/2x3/2o3/2x3/2*a3/2*c -
x3/2x3/2x3/2o3/2*a3/2*c - [Grünbaumian]
x3/2x3/2o3/2x3/2*a3/2*c - [Grünbaumian]
x3/2x3/2x3/2x3/2*a3/2*c - [Grünbaumian]
 
(partial)
snubs and
holosnubs
...
...
 


Icositetrachoral ("icoic") Symmetries   (up)

  o3o4o3o4*a4/3*c (µ=5) o3o4/3o3/2o4*a4*c (µ=19) o3/2o4o3/2o4*a4*c (µ=29)
quasiregulars
x3o4o3o4*a4/3*c - (contains "oct+6{4}","2cube")
o3x4o3o4*a4/3*c - (contains "oct+6{4}")
x3o4/3o3/2o4*a4*c - (contains "oct+6{4}","2cube")
o3x4/3o3/2o4*a4*c - (contains "oct+6{4}")
o3o4/3x3/2o4*a4*c - (contains "oct+6{4}","2cube")
o3o4/3o3/2x4*a4*c - (contains "oct+6{4}")
x3/2o4o3/2o4*a4*c - (contains "oct+6{4}","2cube")
o3/2x4o3/2o4*a4*c - (contains "oct+6{4}")
other
Wythoffians
x3x4o3o4*a4/3*c - (contains "2cube",2cho)
x3o4x3o4*a4/3*c - afdec
x3o4o3x4*a4/3*c - (contains "oct+6{4}")
o3x4o3x4*a4/3*c -
x3x4x3o4*a4/3*c - ditdi
x3x4o3x4*a4/3*c -
x3x4x3x4*a4/3*c - croc
x3x4/3o3/2o4*a4*c - (contains "2cube",2cho)
x3o4/3x3/2o4*a4*c - girfaddic
x3o4/3o3/2x4*a4*c - (contains "oct+6{4}")
o3x4/3x3/2o4*a4*c - (contains "oct+6{4}")
o3x4/3o3/2x4*a4*c -
o3o4/3x3/2x4*a4*c - [Grünbaumian]
x3x4/3x3/2o4*a4*c - diquitdi
x3x4/3o3/2x4*a4*c -
x3o4/3x3/2x4*a4*c - [Grünbaumian]
o3x4/3x3/2x4*a4*c - [Grünbaumian]
x3x4/3x3/2x4*a4*c - [Grünbaumian]
x3/2x4o3/2o4*a4*c - [Grünbaumian]
x3/2o4x3/2o4*a4*c - girfaddic
x3/2o4o3/2x4*a4*c - (contains "oct+6{4}")
o3/2x4o3/2x4*a4*c -
x3/2x4x3/2o4*a4*c - [Grünbaumian]
x3/2x4o3/2x4*a4*c - [Grünbaumian]
x3/2x4x3/2x4*a4*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o4/3o3o4/3*a4*c (µ=77) o3o4o3/2o4/3*a4/3*c (µ=91) o3/2o4/3o3/2o4/3*a4/3*c (µ=245)
quasiregulars
x3o4/3o3o4/3*a4*c - (contains "oct+6{4}","2cube")
o3x4/3o3o4/3*a4*c - (contains "oct+6{4}")
x3o4o3/2o4/3*a4/3*c - (contains "oct+6{4}","2cube")
o3x4o3/2o4/3*a4/3*c - (contains "oct+6{4}")
o3o4x3/2o4/3*a4/3*c - (contains "oct+6{4}","2cube")
o3o4o3/2x4/3*a4/3*c - (contains "oct+6{4}")
x3/2o4/3o3/2o4/3*a4/3*c - (contains "oct+6{4}","2cube")
o3/2x4/3o3/2o4/3*a4/3*c - (contains "oct+6{4}")
other
Wythoffians
x3x4/3o3o4/3*a4*c - (contains "2cube",2cho)
x3o4/3x3o4/3*a4*c - girfaddic
x3o4/3o3x4/3*a4*c - (contains "oct+6{4}")
o3x4/3o3x4/3*a4*c -
x3x4/3x3o4/3*a4*c - diquitdi
x3x4/3o3x4/3*a4*c -
x3x4/3x3x4/3*a4*c - coqroc
x3x4o3/2o4/3*a4/3*c - (contains "2cube",2cho)
x3o4x3/2o4/3*a4/3*c - afdec
x3o4o3/2x4/3*a4/3*c - (contains "oct+6{4}")
o3x4x3/2o4/3*a4/3*c - (contains "oct+6{4}")
o3x4o3/2x4/3*a4/3*c -
o3o4x3/2x4/3*a4/3*c - [Grünbaumian]
x3x4x3/2o4/3*a4/3*c - ditdi
x3x4o3/2x4/3*a4/3*c -
x3o4x3/2x4/3*a4/3*c - [Grünbaumian]
o3x4x3/2x4/3*a4/3*c - [Grünbaumian]
x3x4x3/2x4/3*a4/3*c - [Grünbaumian]
x3/2x4/3o3/2o4/3*a4/3*c - [Grünbaumian]
x3/2o4/3x3/2o4/3*a4/3*c - afdec
x3/2o4/3o3/2x4/3*a4/3*c - (contains "oct+6{4}")
o3/2x4/3o3/2x4/3*a4/3*c -
x3/2x4/3x3/2o4/3*a4/3*c - [Grünbaumian]
x3/2x4/3o3/2x4/3*a4/3*c - [Grünbaumian]
x3/2x4/3x3/2x4/3*a4/3*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3o3o5*a3/2*c   (up)

  o3o3o3o5*a3/2*c (µ=7) o3o3/2o3/2o5*a3*c (µ=113) o3/2o3o3o5/4*a3*c (µ=593) o3/2o3o3/2o5*a3*c (µ=607)
quasiregulars
x3o3o3o5*a3/2*c - (contains "2tet")
o3x3o3o5*a3/2*c - (contains "2tet")
o3o3x3o5*a3/2*c - (contains "2tet")
o3o3o3x5*a3/2*c - sidtaxady
x3o3/2o3/2o5*a3*c - (contains "2tet")
o3x3/2o3/2o5*a3*c - (contains "2tet")
o3o3/2x3/2o5*a3*c - (contains "2tet")
o3o3/2o3/2x5*a3*c - sidtaxady
x3/2o3o3o5/4*a3*c - (contains "2tet")
o3/2x3o3o5/4*a3*c - (contains "2tet")
o3/2o3x3o5/4*a3*c - (contains "2tet")
o3/2o3o3x5/4*a3*c - sidtaxady
x3/2o3o3/2o5*a3*c - (contains "2tet")
o3/2x3o3/2o5*a3*c - (contains "2tet")
o3/2o3x3/2o5*a3*c - (contains "2tet")
o3/2o3o3/2x5*a3*c - sidtaxady
other
Wythoffians
x3x3o3o5*a3/2*c - stut dixady
x3o3x3o5*a3/2*c - [Grünbaumian]
x3o3o3x5*a3/2*c - (contains "2tet")
o3x3x3o5*a3/2*c - (contains "2gike")
o3x3o3x5*a3/2*c -
o3o3x3x5*a3/2*c - (contains "2tet")
x3x3x3o5*a3/2*c - [Grünbaumian]
x3x3o3x5*a3/2*c -
x3o3x3x5*a3/2*c - [Grünbaumian]
o3x3x3x5*a3/2*c - sik vadixady
x3x3x3x5*a3/2*c - [Grünbaumian]
x3x3/2o3/2o5*a3*c - stut dixady
x3o3/2x3/2o5*a3*c - gefdit dixdy
x3o3/2o3/2x5*a3*c - (contains "2tet")
o3x3/2x3/2o5*a3*c - [Grünbaumian]
o3x3/2o3/2x5*a3*c -
o3o3/2x3/2x5*a3*c - [Grünbaumian]
x3x3/2x3/2o5*a3*c - [Grünbaumian]
x3x3/2o3/2x5*a3*c -
x3o3/2x3/2x5*a3*c - [Grünbaumian]
o3x3/2x3/2x5*a3*c - [Grünbaumian]
x3x3/2x3/2x5*a3*c - [Grünbaumian]
x3/2x3o3o5/4*a3*c - [Grünbaumian]
x3/2o3x3o5/4*a3*c - gefdit dixdy
x3/2o3o3x5/4*a3*c - [Grünbaumian]
o3/2x3x3o5/4*a3*c - (contains "2gike")
o3/2x3o3x5/4*a3*c -
o3/2o3x3x5/4*a3*c - (contains "2tet")
x3/2x3x3o5/4*a3*c - [Grünbaumian]
x3/2x3o3x5/4*a3*c - [Grünbaumian]
x3/2o3x3x5/4*a3*c - [Grünbaumian]
o3/2x3x3x5/4*a3*c - sik vadixady
x3/2x3x3x5/4*a3*c - [Grünbaumian]
x3/2x3o3/2o5*a3*c - [Grünbaumian]
x3/2o3x3/2o5*a3*c - gefdit dixdy
x3/2o3o3/2x5*a3*c - (contains "2tet")
o3/2x3x3/2o5*a3*c - (contains "2gike")
o3/2x3o3/2x5*a3*c -
o3/2o3x3/2x5*a3*c - [Grünbaumian]
x3/2x3x3/2o5*a3*c - [Grünbaumian]
x3/2x3o3/2x5*a3*c - [Grünbaumian]
x3/2o3x3/2x5*a3*c - [Grünbaumian]
o3/2x3x3/2x5*a3*c - [Grünbaumian]
x3/2x3x3/2x5*a3*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3/2o3/2o3o5*a3/2*c (µ=713) o3o3/2o3o5/4*a3*c (µ=1087) o3o3o3/2o5/4*a3/2*c (µ=1193) o3/2o3/2o3/2o5/4*a3/2*c (µ=2887)
quasiregulars
x3/2o3/2o3o5*a3/2*c - (contains "2tet")
o3/2x3/2o3o5*a3/2*c - (contains "2tet")
o3/2o3/2x3o5*a3/2*c - (contains "2tet")
o3/2o3/2o3x5*a3/2*c - sidtaxady
x3o3/2o3o5/4*a3*c - (contains "2tet")
o3x3/2o3o5/4*a3*c - (contains "2tet")
o3o3/2x3o5/4*a3*c - (contains "2tet")
o3o3/2o3x5/4*a3*c - sidtaxady
x3o3o3/2o5/4*a3/2*c - (contains "2tet")
o3x3o3/2o5/4*a3/2*c - (contains "2tet")
o3o3x3/2o5/4*a3/2*c - (contains "2tet")
o3o3o3/2x5/4*a3/2*c - sidtaxady
x3/2o3/2o3/2o5/4*a3/2*c - (contains "2tet")
o3/2x3/2o3/2o5/4*a3/2*c - (contains "2tet")
o3/2o3/2x3/2o5/4*a3/2*c - (contains "2tet")
o3/2o3/2o3/2x5/4*a3/2*c - sidtaxady
other
Wythoffians
x3/2x3/2o3o5*a3/2*c - [Grünbaumian]
x3/2o3/2x3o5*a3/2*c - [Grünbaumian]
x3/2o3/2o3x5*a3/2*c - (contains "2tet")
o3/2x3/2x3o5*a3/2*c - [Grünbaumian]
o3/2x3/2o3x5*a3/2*c -
o3/2o3/2x3x5*a3/2*c - (contains "2tet")
x3/2x3/2x3o5*a3/2*c - [Grünbaumian]
x3/2x3/2o3x5*a3/2*c - [Grünbaumian]
x3/2o3/2x3x5*a3/2*c - [Grünbaumian]
o3/2x3/2x3x5*a3/2*c - [Grünbaumian]
x3/2x3/2x3x5*a3/2*c - [Grünbaumian]
x3x3/2o3o5/4*a3*c - stut dixady
x3o3/2x3o5/4*a3*c - gefdit dixdy
x3o3/2o3x5/4*a3*c - [Grünbaumian]
o3x3/2x3o5/4*a3*c - [Grünbaumian]
o3x3/2o3x5/4*a3*c -
o3o3/2x3x5/4*a3*c - (contains "2tet")
x3x3/2x3o5/4*a3*c - [Grünbaumian]
x3x3/2o3x5/4*a3*c - [Grünbaumian]
x3o3/2x3x5/4*a3*c - [Grünbaumian]
o3x3/2x3x5/4*a3*c - [Grünbaumian]
x3x3/2x3x5/4*a3*c - [Grünbaumian]
x3x3o3/2o5/4*a3/2*c - stut dixady
x3o3x3/2o5/4*a3/2*c - [Grünbaumian]
x3o3o3/2x5/4*a3/2*c - [Grünbaumian]
o3x3x3/2o5/4*a3/2*c - (contains "2gike")
o3x3o3/2x5/4*a3/2*c -
o3o3x3/2x5/4*a3/2*c - [Grünbaumian]
x3x3x3/2o5/4*a3/2*c - [Grünbaumian]
x3x3o3/2x5/4*a3/2*c - [Grünbaumian]
x3o3x3/2x5/4*a3/2*c - [Grünbaumian]
o3x3x3/2x5/4*a3/2*c - [Grünbaumian]
x3x3x3/2x5/4*a3/2*c - [Grünbaumian]
x3/2x3/2o3/2o5/4*a3/2*c - [Grünbaumian]
x3/2o3/2x3/2o5/4*a3/2*c - [Grünbaumian]
x3/2o3/2o3/2x5/4*a3/2*c - [Grünbaumian]
o3/2x3/2x3/2o5/4*a3/2*c - [Grünbaumian]
o3/2x3/2o3/2x5/4*a3/2*c -
o3/2o3/2x3/2x5/4*a3/2*c - [Grünbaumian]
x3/2x3/2x3/2o5/4*a3/2*c - [Grünbaumian]
x3/2x3/2o3/2x5/4*a3/2*c - [Grünbaumian]
x3/2o3/2x3/2x5/4*a3/2*c - [Grünbaumian]
o3/2x3/2x3/2x5/4*a3/2*c - [Grünbaumian]
x3/2x3/2x3/2x5/4*a3/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3/2o3o3o5/2*a3*c   (up)

  o3/2o3o3o5/2*a3*c (µ=103) o3o3/2o3o5/2*a3*c (µ=137) o3o3o3o5/3*a3/2*c (µ=497) o3o3o3/2o5/2*a3/2*c (µ=703)
quasiregulars
x3/2o3o3o5/2*a3*c - (contains "2tet")
o3/2x3o3o5/2*a3*c - (contains "2tet")
o3/2o3x3o5/2*a3*c - (contains "2tet")
o3/2o3o3x5/2*a3*c - gardtaxady
x3o3/2o3o5/2*a3*c - (contains "2tet")
o3x3/2o3o5/2*a3*c - (contains "2tet")
o3o3/2x3o5/2*a3*c - (contains "2tet")
o3o3/2o3x5/2*a3*c - gardtaxady
x3o3o3o5/3*a3/2*c - (contains "2tet")
o3x3o3o5/3*a3/2*c - (contains "2tet")
o3o3x3o5/3*a3/2*c - (contains "2tet")
o3o3o3x5/3*a3/2*c - gardtaxady
x3o3o3/2o5/2*a3/2*c - (contains "2tet")
o3x3o3/2o5/2*a3/2*c - (contains "2tet")
o3o3x3/2o5/2*a3/2*c - (contains "2tet")
o3o3o3/2x5/2*a3/2*c - gardtaxady
other
Wythoffians
x3/2x3o3o5/2*a3*c - [Grünbaumian]
x3/2o3x3o5/2*a3*c - sefdit dixdy
x3/2o3o3x5/2*a3*c - [Grünbaumian]
o3/2x3x3o5/2*a3*c - (contains "2ike")
o3/2x3o3x5/2*a3*c -
o3/2o3x3x5/2*a3*c - (contains "2tet")
x3/2x3x3o5/2*a3*c - [Grünbaumian]
x3/2x3o3x5/2*a3*c - [Grünbaumian]
x3/2o3x3x5/2*a3*c - [Grünbaumian]
o3/2x3x3x5/2*a3*c - gik vadixady
x3/2x3x3x5/2*a3*c - [Grünbaumian]
x3x3/2o3o5/2*a3*c - getit dixady
x3o3/2x3o5/2*a3*c - sefdit dixdy
x3o3/2o3x5/2*a3*c - [Grünbaumian]
o3x3/2x3o5/2*a3*c - [Grünbaumian]
o3x3/2o3x5/2*a3*c -
o3o3/2x3x5/2*a3*c - (contains "2tet")
x3x3/2x3o5/2*a3*c - [Grünbaumian]
x3x3/2o3x5/2*a3*c - [Grünbaumian]
x3o3/2x3x5/2*a3*c - [Grünbaumian]
o3x3/2x3x5/2*a3*c - [Grünbaumian]
x3x3/2x3x5/2*a3*c - [Grünbaumian]
x3x3o3o5/3*a3/2*c - getit dixady
x3o3x3o5/3*a3/2*c - [Grünbaumian]
x3o3o3x5/3*a3/2*c - (contains "2tet")
o3x3x3o5/3*a3/2*c - (contains "2ike")
o3x3o3x5/3*a3/2*c -
o3o3x3x5/3*a3/2*c - (contains "2tet")
x3x3x3o5/3*a3/2*c - [Grünbaumian]
x3x3o3x5/3*a3/2*c -
x3o3x3x5/3*a3/2*c - [Grünbaumian]
o3x3x3x5/3*a3/2*c - gik vadixady
x3x3x3x5/3*a3/2*c - [Grünbaumian]
x3x3o3/2o5/2*a3/2*c - getit dixady
x3o3x3/2o5/2*a3/2*c - [Grünbaumian]
x3o3o3/2x5/2*a3/2*c - [Grünbaumian]
o3x3x3/2o5/2*a3/2*c - (contains "2ike")
o3x3o3/2x5/2*a3/2*c -
o3o3x3/2x5/2*a3/2*c - [Grünbaumian]
x3x3x3/2o5/2*a3/2*c - [Grünbaumian]
x3x3o3/2x5/2*a3/2*c - [Grünbaumian]
x3o3x3/2x5/2*a3/2*c - [Grünbaumian]
o3x3x3/2x5/2*a3/2*c - [Grünbaumian]
x3x3x3/2x5/2*a3/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3o3/2o3/2o5/3*a3*c (µ=1063) o3/2o3o3/2o5/3*a3*c (µ=1097) o3/2o3/2o3o5/3*a3/2*c (µ=1663) o3/2o3/2o3/2o5/2*a3/2*c (µ=1937)
quasiregulars
x3o3/2o3/2o5/3*a3*c - (contains "2tet")
o3x3/2o3/2o5/3*a3*c - (contains "2tet")
o3o3/2x3/2o5/3*a3*c - (contains "2tet")
o3o3/2o3/2x5/3*a3*c - gardtaxady
x3/2o3o3/2o5/3*a3*c - (contains "2tet")
o3/2x3o3/2o5/3*a3*c - (contains "2tet")
o3/2o3x3/2o5/3*a3*c - (contains "2tet")
o3/2o3o3/2x5/3*a3*c - gardtaxady
x3/2o3/2o3o5/3*a3/2*c - (contains "2tet")
o3/2x3/2o3o5/3*a3/2*c - (contains "2tet")
o3/2o3/2x3o5/3*a3/2*c - (contains "2tet")
o3/2o3/2o3x5/3*a3/2*c - gardtaxady
x3/2o3/2o3/2o5/2*a3/2*c - (contains "2tet")
o3/2x3/2o3/2o5/2*a3/2*c - (contains "2tet")
o3/2o3/2x3/2o5/2*a3/2*c - (contains "2tet")
o3/2o3/2o3/2x5/2*a3/2*c - gardtaxady
other
Wythoffians
x3x3/2o3/2o5/3*a3*c - getit dixady
x3o3/2x3/2o5/3*a3*c - sefdit dixdy
x3o3/2o3/2x5/3*a3*c - (contains "2tet")
o3x3/2x3/2o5/3*a3*c - [Grünbaumian]
o3x3/2o3/2x5/3*a3*c -
o3o3/2x3/2x5/3*a3*c - [Grünbaumian]
x3x3/2x3/2o5/3*a3*c - [Grünbaumian]
x3x3/2o3/2x5/3*a3*c -
x3o3/2x3/2x5/3*a3*c - [Grünbaumian]
o3x3/2x3/2x5/3*a3*c - [Grünbaumian]
x3x3/2x3/2x5/3*a3*c - [Grünbaumian]
x3/2x3o3/2o5/3*a3*c - [Grünbaumian]
x3/2o3x3/2o5/3*a3*c - sefdit dixdy
x3/2o3o3/2x5/3*a3*c - (contains "2tet")
o3/2x3x3/2o5/3*a3*c - (contains "2ike")
o3/2x3o3/2x5/3*a3*c -
o3/2o3x3/2x5/3*a3*c - [Grünbaumian]
x3/2x3x3/2o5/3*a3*c - [Grünbaumian]
x3/2x3o3/2x5/3*a3*c - [Grünbaumian]
x3/2o3x3/2x5/3*a3*c - [Grünbaumian]
o3/2x3x3/2x5/3*a3*c - [Grünbaumian]
x3/2x3x3/2x5/3*a3*c - [Grünbaumian]
x3/2x3/2o3o5/3*a3/2*c - [Grünbaumian]
x3/2o3/2x3o5/3*a3/2*c - [Grünbaumian]
x3/2o3/2o3x5/3*a3/2*c - (contains "2tet")
o3/2x3/2x3o5/3*a3/2*c - [Grünbaumian]
o3/2x3/2o3x5/3*a3/2*c -
o3/2o3/2x3x5/3*a3/2*c - (contains "2tet")
x3/2x3/2x3o5/3*a3/2*c - [Grünbaumian]
x3/2x3/2o3x5/3*a3/2*c - [Grünbaumian]
x3/2o3/2x3x5/3*a3/2*c - [Grünbaumian]
o3/2x3/2x3x5/3*a3/2*c - [Grünbaumian]
x3/2x3/2x3x5/3*a3/2*c - [Grünbaumian]
x3/2x3/2o3/2o5/2*a3/2*c - [Grünbaumian]
x3/2o3/2x3/2o5/2*a3/2*c - [Grünbaumian]
x3/2o3/2o3/2x5/2*a3/2*c - [Grünbaumian]
o3/2x3/2x3/2o5/2*a3/2*c - [Grünbaumian]
o3/2x3/2o3/2x5/2*a3/2*c -
o3/2o3/2x3/2x5/2*a3/2*c - [Grünbaumian]
x3/2x3/2x3/2o5/2*a3/2*c - [Grünbaumian]
x3/2x3/2o3/2x5/2*a3/2*c - [Grünbaumian]
x3/2o3/2x3/2x5/2*a3/2*c - [Grünbaumian]
o3/2x3/2x3/2x5/2*a3/2*c - [Grünbaumian]
x3/2x3/2x3/2x5/2*a3/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3o5/2o5*a3/2*c   (up)

  o3o3o5/2o5*a3/2*c (µ=48) o3o3/2o5/3o5*a3*c (µ=72) o3/2o3o5/3o5*a3*c (µ=408) o3/2o3o5/2o5/4*a3*c (µ=792)
quasiregulars
x3o3o5/2o5*a3/2*c - (contains "2tet")
o3x3o5/2o5*a3/2*c - (contains "2tet")
o3o3x5/2o5*a3/2*c - (contains "2tet")
o3o3o5/2x5*a3/2*c - dattathi
x3o3/2o5/3o5*a3*c - (contains "2tet")
o3x3/2o5/3o5*a3*c - (contains "2tet")
o3o3/2x5/3o5*a3*c - (contains "2tet")
o3o3/2o5/3x5*a3*c - dattathi
x3/2o3o5/3o5*a3*c - (contains "2tet")
o3/2x3o5/3o5*a3*c - (contains "2tet")
o3/2o3x5/3o5*a3*c - (contains "2tet")
o3/2o3o5/3x5*a3*c - dattathi
x3/2o3o5/2o5/4*a3*c - (contains "2tet")
o3/2x3o5/2o5/4*a3*c - (contains "2tet")
o3/2o3x5/2o5/4*a3*c - (contains "2tet")
o3/2o3o5/2x5/4*a3*c - dattathi
other
Wythoffians
x3x3o5/2o5*a3/2*c - (contains cid)
x3o3x5/2o5*a3/2*c - [Grünbaumian]
x3o3o5/2x5*a3/2*c - (contains "2tet")
o3x3x5/2o5*a3/2*c - (contains gacid)
o3x3o5/2x5*a3/2*c -
o3o3x5/2x5*a3/2*c - [Grünbaumian]
x3x3x5/2o5*a3/2*c - [Grünbaumian]
x3x3o5/2x5*a3/2*c -
x3o3x5/2x5*a3/2*c - [Grünbaumian]
o3x3x5/2x5*a3/2*c - [Grünbaumian]
x3x3x5/2x5*a3/2*c - [Grünbaumian]
x3x3/2o5/3o5*a3*c - (contains cid)
x3o3/2x5/3o5*a3*c - efdit xithi
x3o3/2o5/3x5*a3*c - (contains "2tet")
o3x3/2x5/3o5*a3*c - [Grünbaumian]
o3x3/2o5/3x5*a3*c -
o3o3/2x5/3x5*a3*c - (contains "2tet")
x3x3/2x5/3o5*a3*c - [Grünbaumian]
x3x3/2o5/3x5*a3*c -
x3o3/2x5/3x5*a3*c - xhidy
o3x3/2x5/3x5*a3*c - [Grünbaumian]
x3x3/2x5/3x5*a3*c - [Grünbaumian]
x3/2x3o5/3o5*a3*c - [Grünbaumian]
x3/2o3x5/3o5*a3*c - efdit xithi
x3/2o3o5/3x5*a3*c - (contains "2tet")
o3/2x3x5/3o5*a3*c - (contains gacid)
o3/2x3o5/3x5*a3*c -
o3/2o3x5/3x5*a3*c - (contains "2tet")
x3/2x3x5/3o5*a3*c - [Grünbaumian]
x3/2x3o5/3x5*a3*c - [Grünbaumian]
x3/2o3x5/3x5*a3*c - xhidy
o3/2x3x5/3x5*a3*c -
x3/2x3x5/3x5*a3*c - [Grünbaumian]
x3/2x3o5/2o5/4*a3*c - [Grünbaumian]
x3/2o3x5/2o5/4*a3*c - efdit xithi
x3/2o3o5/2x5/4*a3*c - [Grünbaumian]
o3/2x3x5/2o5/4*a3*c - (contains gacid)
o3/2x3o5/2x5/4*a3*c -
o3/2o3x5/2x5/4*a3*c - [Grünbaumian]
x3/2x3x5/2o5/4*a3*c - [Grünbaumian]
x3/2x3o5/2x5/4*a3*c - [Grünbaumian]
x3/2o3x5/2x5/4*a3*c - [Grünbaumian]
o3/2x3x5/2x5/4*a3*c - [Grünbaumian]
x3/2x3x5/2x5/4*a3*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3/2o3/2o5/2o5*a3/2*c (µ=912) o3o3/2o5/2o5/4*a3*c (µ=1128) o3o3o5/3o5/4*a3/2*c (µ=1152) o3/2o3/2o5/3o5/4*a3/2*c (µ=2688)
quasiregulars
x3/2o3/2o5/2o5*a3/2*c - (contains "2tet")
o3/2x3/2o5/2o5*a3/2*c - (contains "2tet")
o3/2o3/2x5/2o5*a3/2*c - (contains "2tet")
o3/2o3/2o5/2x5*a3/2*c - dattathi
x3o3/2o5/2o5/4*a3*c - (contains "2tet")
o3x3/2o5/2o5/4*a3*c - (contains "2tet")
o3o3/2x5/2o5/4*a3*c - (contains "2tet")
o3o3/2o5/2x5/4*a3*c - dattathi
x3o3o5/3o5/4*a3/2*c - (contains "2tet")
o3x3o5/3o5/4*a3/2*c - (contains "2tet")
o3o3x5/3o5/4*a3/2*c - (contains "2tet")
o3o3o5/3x5/4*a3/2*c - dattathi
x3/2o3/2o5/3o5/4*a3/2*c - (contains "2tet")
o3/2x3/2o5/3o5/4*a3/2*c - (contains "2tet")
o3/2o3/2x5/3o5/4*a3/2*c - (contains "2tet")
o3/2o3/2o5/3x5/4*a3/2*c - dattathi
other
Wythoffians
x3/2x3/2o5/2o5*a3/2*c - [Grünbaumian]
x3/2o3/2x5/2o5*a3/2*c - [Grünbaumian]
x3/2o3/2o5/2x5*a3/2*c - (contains "2tet")
o3/2x3/2x5/2o5*a3/2*c - [Grünbaumian]
o3/2x3/2o5/2x5*a3/2*c -
o3/2o3/2x5/2x5*a3/2*c - [Grünbaumian]
x3/2x3/2x5/2o5*a3/2*c - [Grünbaumian]
x3/2x3/2o5/2x5*a3/2*c - [Grünbaumian]
x3/2o3/2x5/2x5*a3/2*c - [Grünbaumian]
o3/2x3/2x5/2x5*a3/2*c - [Grünbaumian]
x3/2x3/2x5/2x5*a3/2*c - [Grünbaumian]
x3x3/2o5/2o5/4*a3*c - (contains cid)
x3o3/2x5/2o5/4*a3*c - efdit xithi
x3o3/2o5/2x5/4*a3*c - [Grünbaumian]
o3x3/2x5/2o5/4*a3*c - [Grünbaumian]
o3x3/2o5/2x5/4*a3*c -
o3o3/2x5/2x5/4*a3*c - [Grünbaumian]
x3x3/2x5/2o5/4*a3*c - [Grünbaumian]
x3x3/2o5/2x5/4*a3*c - [Grünbaumian]
x3o3/2x5/2x5/4*a3*c - [Grünbaumian]
o3x3/2x5/2x5/4*a3*c - [Grünbaumian]
x3x3/2x5/2x5/4*a3*c - [Grünbaumian]
x3x3o5/3o5/4*a3/2*c - (contains cid)
x3o3x5/3o5/4*a3/2*c - [Grünbaumian]
x3o3o5/3x5/4*a3/2*c - [Grünbaumian]
o3x3x5/3o5/4*a3/2*c - (contains gacid)
o3x3o5/3x5/4*a3/2*c -
o3o3x5/3x5/4*a3/2*c - (contains "2tet")
x3x3x5/3o5/4*a3/2*c - [Grünbaumian]
x3x3o5/3x5/4*a3/2*c - [Grünbaumian]
x3o3x5/3x5/4*a3/2*c - [Grünbaumian]
o3x3x5/3x5/4*a3/2*c -
x3x3x5/3x5/4*a3/2*c - [Grünbaumian]
x3/2x3/2o5/3o5/4*a3/2*c - [Grünbaumian]
x3/2o3/2x5/3o5/4*a3/2*c - [Grünbaumian]
x3/2o3/2o5/3x5/4*a3/2*c - [Grünbaumian]
o3/2x3/2x5/3o5/4*a3/2*c - [Grünbaumian]
o3/2x3/2o5/3x5/4*a3/2*c -
o3/2o3/2x5/3x5/4*a3/2*c - (contains "2tet")
x3/2x3/2x5/3o5/4*a3/2*c - [Grünbaumian]
x3/2x3/2o5/3x5/4*a3/2*c - [Grünbaumian]
x3/2o3/2x5/3x5/4*a3/2*c - [Grünbaumian]
o3/2x3/2x5/3x5/4*a3/2*c - [Grünbaumian]
x3/2x3/2x5/3x5/4*a3/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o5/2o5o3/2*a3*c   (up)

  o3o5/2o5o3/2*a3*c (µ=35) o3o5/2o5/4o3*a3*c (µ=205) o3/2o5/2o5o3*a3/2*c (µ=325) o3o5/3o5o3*a3/2*c (µ=395)
quasiregulars
x3o5/2o5o3/2*a3*c - (contains "2ike")
o3x5/2o5o3/2*a3*c - sishi+gridixhi
o3o5/2x5o3/2*a3*c - datcathi
o3o5/2o5x3/2*a3*c - gaghi+sridixhi
x3o5/2o5/4o3*a3*c - (contains "2ike")
o3x5/2o5/4o3*a3*c - sishi+gridixhi
o3o5/2x5/4o3*a3*c - datcathi
o3o5/2o5/4x3*a3*c - gaghi+sridixhi
x3/2o5/2o5o3*a3/2*c - (contains "2ike")
o3/2x5/2o5o3*a3/2*c - sishi+gridixhi
o3/2o5/2x5o3*a3/2*c - datcathi
o3/2o5/2o5x3*a3/2*c - gaghi+sridixhi
x3o5/3o5o3*a3/2*c - (contains "2ike")
o3x5/3o5o3*a3/2*c - sishi+gridixhi
o3o5/3x5o3*a3/2*c - datcathi
o3o5/3o5x3*a3/2*c - gaghi+sridixhi
other
Wythoffians
x3x5/2o5o3/2*a3*c - (contains "2gike")
x3o5/2x5o3/2*a3*c - girfixthi
x3o5/2o5x3/2*a3*c - [Grünbaumian]
o3x5/2x5o3/2*a3*c - [Grünbaumian]
o3x5/2o5x3/2*a3*c -
o3o5/2x5x3/2*a3*c - (contains "2seihid")
x3x5/2x5o3/2*a3*c - [Grünbaumian]
x3x5/2o5x3/2*a3*c - [Grünbaumian]
x3o5/2x5x3/2*a3*c - [Grünbaumian]
o3x5/2x5x3/2*a3*c - [Grünbaumian]
x3x5/2x5x3/2*a3*c - [Grünbaumian]
x3x5/2o5/4o3*a3*c - (contains "2gike")
x3o5/2x5/4o3*a3*c - girfixthi
x3o5/2o5/4x3*a3*c - (contains "2ike")
o3x5/2x5/4o3*a3*c - [Grünbaumian]
o3x5/2o5/4x3*a3*c -
o3o5/2x5/4x3*a3*c - [Grünbaumian]
x3x5/2x5/4o3*a3*c - [Grünbaumian]
x3x5/2o5/4x3*a3*c -
x3o5/2x5/4x3*a3*c - [Grünbaumian]
o3x5/2x5/4x3*a3*c - [Grünbaumian]
x3x5/2x5/4x3*a3*c - [Grünbaumian]
x3/2x5/2o5o3*a3/2*c - [Grünbaumian]
x3/2o5/2x5o3*a3/2*c - [Grünbaumian]
x3/2o5/2o5x3*a3/2*c - (contains "2ike")
o3/2x5/2x5o3*a3/2*c - [Grünbaumian]
o3/2x5/2o5x3*a3/2*c -
o3/2o5/2x5x3*a3/2*c - (contains "2seihid")
x3/2x5/2x5o3*a3/2*c - [Grünbaumian]
x3/2x5/2o5x3*a3/2*c - [Grünbaumian]
x3/2o5/2x5x3*a3/2*c - [Grünbaumian]
o3/2x5/2x5x3*a3/2*c - [Grünbaumian]
x3/2x5/2x5x3*a3/2*c - [Grünbaumian]
x3x5/3o5o3*a3/2*c - (contains "2gike")
x3o5/3x5o3*a3/2*c - [Grünbaumian]
x3o5/3o5x3*a3/2*c - (contains "2ike")
o3x5/3x5o3*a3/2*c - (contains "2geihid")
o3x5/3o5x3*a3/2*c -
o3o5/3x5x3*a3/2*c - (contains "2seihid")
x3x5/3x5o3*a3/2*c - [Grünbaumian]
x3x5/3o5x3*a3/2*c -
x3o5/3x5x3*a3/2*c - [Grünbaumian]
o3x5/3x5x3*a3/2*c -
x3x5/3x5x3*a3/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3/2o5/3o5o3/2*a3*c (µ=685) o3/2o5/3o5/4o3*a3*c (µ=1475) o3o5/3o5/4o3/2*a3/2*c (µ=1765) o3/2o5/2o5/4o3/2*a3/2*c (µ=2315)
quasiregulars
x3/2o5/3o5o3/2*a3*c - (contains "2ike")
o3/2x5/3o5o3/2*a3*c - sishi+gridixhi
o3/2o5/3x5o3/2*a3*c - datcathi
o3/2o5/3o5x3/2*a3*c - gaghi+sridixhi
x3/2o5/3o5/4o3*a3*c - (contains "2ike")
o3/2x5/3o5/4o3*a3*c - sishi+gridixhi
o3/2o5/3x5/4o3*a3*c - datcathi
o3/2o5/3o5/4x3*a3*c - gaghi+sridixhi
x3o5/3o5/4o3/2*a3/2*c - (contains "2ike")
o3x5/3o5/4o3/2*a3/2*c - sishi+gridixhi
o3o5/3x5/4o3/2*a3/2*c - datcathi
o3o5/3o5/4x3/2*a3/2*c - gaghi+sridixhi
x3/2o5/2o5/4o3/2*a3/2*c - (contains "2ike")
o3/2x5/2o5/4o3/2*a3/2*c - sishi+gridixhi
o3/2o5/2x5/4o3/2*a3/2*c - datcathi
o3/2o5/2o5/4x3/2*a3/2*c - gaghi+sridixhi
other
Wythoffians
x3/2x5/3o5o3/2*a3*c - [Grünbaumian]
x3/2o5/3x5o3/2*a3*c - girfixthi
x3/2o5/3o5x3/2*a3*c - [Grünbaumian]
o3/2x5/3x5o3/2*a3*c - (contains "2geihid")
o3/2x5/3o5x3/2*a3*c -
o3/2o5/3x5x3/2*a3*c - (contains "2seihid")
x3/2x5/3x5o3/2*a3*c - [Grünbaumian]
x3/2x5/3o5x3/2*a3*c - [Grünbaumian]
x3/2o5/3x5x3/2*a3*c - [Grünbaumian]
o3/2x5/3x5x3/2*a3*c -
x3/2x5/3x5x3/2*a3*c - [Grünbaumian]
x3/2x5/3o5/4o3*a3*c - [Grünbaumian]
x3/2o5/3x5/4o3*a3*c - girfixthi
x3/2o5/3o5/4x3*a3*c - (contains "2ike")
o3/2x5/3x5/4o3*a3*c - (contains "2geihid")
o3/2x5/3o5/4x3*a3*c -
o3/2o5/3x5/4x3*a3*c - [Grünbaumian]
x3/2x5/3x5/4o3*a3*c - [Grünbaumian]
x3/2x5/3o5/4x3*a3*c - [Grünbaumian]
x3/2o5/3x5/4x3*a3*c - [Grünbaumian]
o3/2x5/3x5/4x3*a3*c - [Grünbaumian]
x3/2x5/3x5/4x3*a3*c - [Grünbaumian]
x3x5/3o5/4o3/2*a3/2*c - (contains "2gike")
x3o5/3x5/4o3/2*a3/2*c - [Grünbaumian]
x3o5/3o5/4x3/2*a3/2*c - [Grünbaumian]
o3x5/3x5/4o3/2*a3/2*c - (contains "2geihid")
o3x5/3o5/4x3/2*a3/2*c -
o3o5/3x5/4x3/2*a3/2*c - [Grünbaumian]
x3x5/3x5/4o3/2*a3/2*c - [Grünbaumian]
x3x5/3o5/4x3/2*a3/2*c - [Grünbaumian]
x3o5/3x5/4x3/2*a3/2*c - [Grünbaumian]
o3x5/3x5/4x3/2*a3/2*c - [Grünbaumian]
x3x5/3x5/4x3/2*a3/2*c - [Grünbaumian]
x3/2x5/2o5/4o3/2*a3/2*c - [Grünbaumian]
x3/2o5/2x5/4o3/2*a3/2*c - [Grünbaumian]
x3/2o5/2o5/4x3/2*a3/2*c - [Grünbaumian]
o3/2x5/2x5/4o3/2*a3/2*c - [Grünbaumian]
o3/2x5/2o5/4x3/2*a3/2*c -
o3/2o5/2x5/4x3/2*a3/2*c - [Grünbaumian]
x3/2x5/2x5/4o3/2*a3/2*c - [Grünbaumian]
x3/2x5/2o5/4x3/2*a3/2*c - [Grünbaumian]
x3/2o5/2x5/4x3/2*a3/2*c - [Grünbaumian]
o3/2x5/2x5/4x3/2*a3/2*c - [Grünbaumian]
x3/2x5/2x5/4x3/2*a3/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o5o5/2o5/2*a3/2*c   (up)

  o3o5o5/2o5/2*a3/2*c (µ=126) o3/2o5o5/2o5/3*a3*c (µ=234) o3/2o5o5/3o5/2*a3*c (µ=486) o3o5o5/3o5/3*a3/2*c (µ=594)
quasiregulars
x3o5o5/2o5/2*a3/2*c - (contains gacid)
o3x5o5/2o5/2*a3/2*c - gaghi+didhi
o3o5x5/2o5/2*a3/2*c - (contains gacid)
o3o5o5/2x5/2*a3/2*c - (contains "2gissid")
x3/2o5o5/2o5/3*a3*c - (contains gacid)
o3/2x5o5/2o5/3*a3*c - gaghi+didhi
o3/2o5x5/2o5/3*a3*c - (contains gacid)
o3/2o5o5/2x5/3*a3*c - (contains "2gissid")
x3/2o5o5/3o5/2*a3*c - (contains gacid)
o3/2x5o5/3o5/2*a3*c - gaghi+didhi
o3/2o5x5/3o5/2*a3*c - (contains gacid)
o3/2o5o5/3x5/2*a3*c - (contains "2gissid")
x3o5o5/3o5/3*a3/2*c - (contains gacid)
o3x5o5/3o5/3*a3/2*c - gaghi+didhi
o3o5x5/3o5/3*a3/2*c - (contains gacid)
o3o5o5/3x5/3*a3/2*c - (contains "2gissid")
other
Wythoffians
x3x5o5/2o5/2*a3/2*c - (contains gacid)
x3o5x5/2o5/2*a3/2*c - [Grünbaumian]
x3o5o5/2x5/2*a3/2*c - [Grünbaumian]
o3x5x5/2o5/2*a3/2*c - (contains gacid)
o3x5o5/2x5/2*a3/2*c -
o3o5x5/2x5/2*a3/2*c - [Grünbaumian]
x3x5x5/2o5/2*a3/2*c - [Grünbaumian]
x3x5o5/2x5/2*a3/2*c - [Grünbaumian]
x3o5x5/2x5/2*a3/2*c - [Grünbaumian]
o3x5x5/2x5/2*a3/2*c - [Grünbaumian]
x3x5x5/2x5/2*a3/2*c - [Grünbaumian]
x3/2x5o5/2o5/3*a3*c - [Grünbaumian]
x3/2o5x5/2o5/3*a3*c - (contains "2sidhei")
x3/2o5o5/2x5/3*a3*c - (contains "2gike")
o3/2x5x5/2o5/3*a3*c - (contains gacid)
o3/2x5o5/2x5/3*a3*c -
o3/2o5x5/2x5/3*a3*c - [Grünbaumian]
x3/2x5x5/2o5/3*a3*c - [Grünbaumian]
x3/2x5o5/2x5/3*a3*c - [Grünbaumian]
x3/2o5x5/2x5/3*a3*c - [Grünbaumian]
o3/2x5x5/2x5/3*a3*c - [Grünbaumian]
x3/2x5x5/2x5/3*a3*c - [Grünbaumian]
x3/2x5o5/3o5/2*a3*c - [Grünbaumian]
x3/2o5x5/3o5/2*a3*c - (contains "2sidhei")
x3/2o5o5/3x5/2*a3*c - [Grünbaumian]
o3/2x5x5/3o5/2*a3*c - (contains gacid)
o3/2x5o5/3x5/2*a3*c -
o3/2o5x5/3x5/2*a3*c - gefidtethi
x3/2x5x5/3o5/2*a3*c - [Grünbaumian]
x3/2x5o5/3x5/2*a3*c - [Grünbaumian]
x3/2o5x5/3x5/2*a3*c - [Grünbaumian]
o3/2x5x5/3x5/2*a3*c -
x3/2x5x5/3x5/2*a3*c - [Grünbaumian]
x3x5o5/3o5/3*a3/2*c - (contains gacid)
x3o5x5/3o5/3*a3/2*c - [Grünbaumian]
x3o5o5/3x5/3*a3/2*c - (contains "2gike")
o3x5x5/3o5/3*a3/2*c - (contains gacid)
o3x5o5/3x5/3*a3/2*c -
o3o5x5/3x5/3*a3/2*c - gefidtethi
x3x5x5/3o5/3*a3/2*c - [Grünbaumian]
x3x5o5/3x5/3*a3/2*c -
x3o5x5/3x5/3*a3/2*c - [Grünbaumian]
o3x5x5/3x5/3*a3/2*c -
x3x5x5/3x5/3*a3/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3o5/4o5/3o5/2*a3*c (µ=714) o3o5/4o5/2o5/3*a3*c (µ=966) o3/2o5/4o5/2o5/2*a3/2*c (µ=1554) o3/2o5/4o5/3o5/3*a3/2*c (µ=2526)
quasiregulars
x3o5/4o5/3o5/2*a3*c - (contains gacid)
o3x5/4o5/3o5/2*a3*c - gaghi+didhi
o3o5/4x5/3o5/2*a3*c - (contains gacid)
o3o5/4o5/3x5/2*a3*c - (contains "2gissid")
x3o5/4o5/2o5/3*a3*c - (contains gacid)
o3x5/4o5/2o5/3*a3*c - gaghi+didhi
o3o5/4x5/2o5/3*a3*c - (contains gacid)
o3o5/4o5/2x5/3*a3*c - (contains "2gissid")
x3/2o5/4o5/2o5/2*a3/2*c - (contains gacid)
o3/2x5/4o5/2o5/2*a3/2*c - gaghi+didhi
o3/2o5/4x5/2o5/2*a3/2*c - (contains gacid)
o3/2o5/4o5/2x5/2*a3/2*c - (contains "2gissid")
x3/2o5/4o5/3o5/3*a3/2*c - (contains gacid)
o3/2x5/4o5/3o5/3*a3/2*c - gaghi+didhi
o3/2o5/4x5/3o5/3*a3/2*c - (contains gacid)
o3/2o5/4o5/3x5/3*a3/2*c - (contains "2gissid")
other
Wythoffians
x3x5/4o5/3o5/2*a3*c - (contains gacid)
x3o5/4x5/3o5/2*a3*c - (contains "2sidhei")
x3o5/4o5/3x5/2*a3*c - [Grünbaumian]
o3x5/4x5/3o5/2*a3*c - [Grünbaumian]
o3x5/4o5/3x5/2*a3*c -
o3o5/4x5/3x5/2*a3*c - gefidtethi
x3x5/4x5/3o5/2*a3*c - [Grünbaumian]
x3x5/4o5/3x5/2*a3*c - [Grünbaumian]
x3o5/4x5/3x5/2*a3*c - [Grünbaumian]
o3x5/4x5/3x5/2*a3*c - [Grünbaumian]
x3x5/4x5/3x5/2*a3*c - [Grünbaumian]
x3x5/4o5/2o5/3*a3*c - (contains gacid)
x3o5/4x5/2o5/3*a3*c - (contains "2sidhei")
x3o5/4o5/2x5/3*a3*c - (contains "2gike")
o3x5/4x5/2o5/3*a3*c - [Grünbaumian]
o3x5/4o5/2x5/3*a3*c -
o3o5/4x5/2x5/3*a3*c - [Grünbaumian]
x3x5/4x5/2o5/3*a3*c - [Grünbaumian]
x3x5/4o5/2x5/3*a3*c -
x3o5/4x5/2x5/3*a3*c - [Grünbaumian]
o3x5/4x5/2x5/3*a3*c - [Grünbaumian]
x3x5/4x5/2x5/3*a3*c - [Grünbaumian]
x3/2x5/4o5/2o5/2*a3/2*c - [Grünbaumian]
x3/2o5/4x5/2o5/2*a3/2*c - [Grünbaumian]
x3/2o5/4o5/2x5/2*a3/2*c - [Grünbaumian]
o3/2x5/4x5/2o5/2*a3/2*c - [Grünbaumian]
o3/2x5/4o5/2x5/2*a3/2*c -
o3/2o5/4x5/2x5/2*a3/2*c - [Grünbaumian]
x3/2x5/4x5/2o5/2*a3/2*c - [Grünbaumian]
x3/2x5/4o5/2x5/2*a3/2*c - [Grünbaumian]
x3/2o5/4x5/2x5/2*a3/2*c - [Grünbaumian]
o3/2x5/4x5/2x5/2*a3/2*c - [Grünbaumian]
x3/2x5/4x5/2x5/2*a3/2*c - [Grünbaumian]
x3/2x5/4o5/3o5/3*a3/2*c - [Grünbaumian]
x3/2o5/4x5/3o5/3*a3/2*c - [Grünbaumian]
x3/2o5/4o5/3x5/3*a3/2*c - (contains "2gike")
o3/2x5/4x5/3o5/3*a3/2*c - [Grünbaumian]
o3/2x5/4o5/3x5/3*a3/2*c -
o3/2o5/4x5/3x5/3*a3/2*c - gefidtethi
x3/2x5/4x5/3o5/3*a3/2*c - [Grünbaumian]
x3/2x5/4o5/3x5/3*a3/2*c - [Grünbaumian]
x3/2o5/4x5/3x5/3*a3/2*c - [Grünbaumian]
o3/2x5/4x5/3x5/3*a3/2*c - [Grünbaumian]
x3/2x5/4x5/3x5/3*a3/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o5/3o5o5*a3/2*c   (up)

  o3o5/3o5o5*a3/2*c (µ=54) o3o5/2o5/4o5*a3*c (µ=66) o3o5/2o5o5/4*a3*c (µ=174) o3/2o5/2o5o5*a3/2*c (µ=186)
quasiregulars
x3o5/3o5o5*a3/2*c - (contains cid)
o3x5/3o5o5*a3/2*c - sishi+ofiddady
o3o5/3x5o5*a3/2*c - (contains cid)
o3o5/3o5x5*a3/2*c - (contains "2doe")
x3o5/2o5/4o5*a3*c - (contains cid)
o3x5/2o5/4o5*a3*c - sishi+ofiddady
o3o5/2x5/4o5*a3*c - (contains cid)
o3o5/2o5/4x5*a3*c - (contains "2doe")
x3o5/2o5o5/4*a3*c - (contains cid)
o3x5/2o5o5/4*a3*c - sishi+ofiddady
o3o5/2x5o5/4*a3*c - (contains cid)
o3o5/2o5x5/4*a3*c - (contains "2doe")
x3/2o5/2o5o5*a3/2*c - (contains cid)
o3/2x5/2o5o5*a3/2*c - sishi+ofiddady
o3/2o5/2x5o5*a3/2*c - (contains cid)
o3/2o5/2o5x5*a3/2*c - (contains "2doe")
other
Wythoffians
x3x5/3o5o5*a3/2*c - (contains cid)
x3o5/3x5o5*a3/2*c - [Grünbaumian]
x3o5/3o5x5*a3/2*c - (contains "2ike")
o3x5/3x5o5*a3/2*c - (contains cid)
o3x5/3o5x5*a3/2*c -
o3o5/3x5x5*a3/2*c - sefidtethi
x3x5/3x5o5*a3/2*c - [Grünbaumian]
x3x5/3o5x5*a3/2*c -
x3o5/3x5x5*a3/2*c - [Grünbaumian]
o3x5/3x5x5*a3/2*c -
x3x5/3x5x5*a3/2*c - [Grünbaumian]
x3x5/2o5/4o5*a3*c - (contains cid)
x3o5/2x5/4o5*a3*c - (contains "2gidhei")
x3o5/2o5/4x5*a3*c - (contains "2ike")
o3x5/2x5/4o5*a3*c - [Grünbaumian]
o3x5/2o5/4x5*a3*c -
o3o5/2x5/4x5*a3*c - [Grünbaumian]
x3x5/2x5/4o5*a3*c - [Grünbaumian]
x3x5/2o5/4x5*a3*c -
x3o5/2x5/4x5*a3*c - [Grünbaumian]
o3x5/2x5/4x5*a3*c - [Grünbaumian]
x3x5/2x5/4x5*a3*c - [Grünbaumian]
x3x5/2o5o5/4*a3*c - (contains cid)
x3o5/2x5o5/4*a3*c - (contains "2gidhei")
x3o5/2o5x5/4*a3*c - [Grünbaumian]
o3x5/2x5o5/4*a3*c - [Grünbaumian]
o3x5/2o5x5/4*a3*c -
o3o5/2x5x5/4*a3*c - sefidtethi
x3x5/2x5o5/4*a3*c - [Grünbaumian]
x3x5/2o5x5/4*a3*c - [Grünbaumian]
x3o5/2x5x5/4*a3*c - [Grünbaumian]
o3x5/2x5x5/4*a3*c - [Grünbaumian]
x3x5/2x5x5/4*a3*c - [Grünbaumian]
x3/2x5/2o5o5*a3/2*c - [Grünbaumian]
x3/2o5/2x5o5*a3/2*c - [Grünbaumian]
x3/2o5/2o5x5*a3/2*c - (contains "2ike")
o3/2x5/2x5o5*a3/2*c - [Grünbaumian]
o3/2x5/2o5x5*a3/2*c -
o3/2o5/2x5x5*a3/2*c - sefidtethi
x3/2x5/2x5o5*a3/2*c - [Grünbaumian]
x3/2x5/2o5x5*a3/2*c - [Grünbaumian]
x3/2o5/2x5x5*a3/2*c - [Grünbaumian]
o3/2x5/2x5x5*a3/2*c - [Grünbaumian]
x3/2x5/2x5x5*a3/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3/2o5/3o5o5/4*a3*c (µ=1026) o3/2o5/3o5/4o5*a3*c (µ=1134) o3o5/3o5/4o5/4*a3/2*c (µ=2106) o3/2o5/2o5/4o5/4*a3/2*c (µ=2454)
quasiregulars
x3/2o5/3o5o5/4*a3*c - (contains cid)
o3/2x5/3o5o5/4*a3*c - sishi+ofiddady
o3/2o5/3x5o5/4*a3*c - (contains cid)
o3/2o5/3o5x5/4*a3*c - (contains "2doe")
x3/2o5/3o5/4o5*a3*c - (contains cid)
o3/2x5/3o5/4o5*a3*c - sishi+ofiddady
o3/2o5/3x5/4o5*a3*c - (contains cid)
o3/2o5/3o5/4x5*a3*c - (contains "2doe")
x3/2o5/3o5/4o5/4*a3/2*c - (contains cid)
o3x5/3o5/4o5/4*a3/2*c - sishi+ofiddady
o3o5/3x5/4o5/4*a3/2*c - (contains cid)
o3o5/3o5/4x5/4*a3/2*c - (contains "2doe")
x3/2o5/2o5/4o5/4*a3/2*c - (contains cid)
o3/2x5/2o5/4o5/4*a3/2*c - sishi+ofiddady
o3/2o5/2x5/4o5/4*a3/2*c - (contains cid)
o3/2o5/2o5/4x5/4*a3/2*c - (contains "2doe")
other
Wythoffians
x3/2x5/3o5o5/4*a3*c - [Grünbaumian]
x3/2o5/3x5o5/4*a3*c - (contains "2gidhei")
x3/2o5/3o5x5/4*a3*c - [Grünbaumian]
o3/2x5/3x5o5/4*a3*c - (contains cid)
o3/2x5/3o5x5/4*a3*c -
o3/2o5/3x5x5/4*a3*c - sefidtethi
x3/2x5/3x5o5/4*a3*c - [Grünbaumian]
x3/2x5/3o5x5/4*a3*c - [Grünbaumian]
x3/2o5/3x5x5/4*a3*c - [Grünbaumian]
o3/2x5/3x5x5/4*a3*c -
x3/2x5/3x5x5/4*a3*c - [Grünbaumian]
x3/2x5/3o5/4o5*a3*c - [Grünbaumian]
x3/2o5/3x5/4o5*a3*c - (contains "2gidhei")
x3/2o5/3o5/4x5*a3*c - (contains "2ike")
o3/2x5/3x5/4o5*a3*c - (contains cid)
o3/2x5/3o5/4x5*a3*c -
o3/2o5/3x5/4x5*a3*c - [Grünbaumian]
x3/2x5/3x5/4o5*a3*c - [Grünbaumian]
x3/2x5/3o5/4x5*a3*c - [Grünbaumian]
x3/2o5/3x5/4x5*a3*c - [Grünbaumian]
o3/2x5/3x5/4x5*a3*c - [Grünbaumian]
x3/2x5/3x5/4x5*a3*c - [Grünbaumian]
x3x5/3o5/4o5/4*a3/2*c - (contains cid)
x3o5/3x5/4o5/4*a3/2*c - [Grünbaumian]
x3o5/3o5/4x5/4*a3/2*c - [Grünbaumian]
o3x5/3x5/4o5/4*a3/2*c - (contains cid)
o3x5/3o5/4x5/4*a3/2*c -
o3o5/3x5/4x5/4*a3/2*c - [Grünbaumian]
x3x5/3x5/4o5/4*a3/2*c - [Grünbaumian]
x3x5/3o5/4x5/4*a3/2*c - [Grünbaumian]
x3o5/3x5/4x5/4*a3/2*c - [Grünbaumian]
o3x5/3x5/4x5/4*a3/2*c - [Grünbaumian]
x3x5/3x5/4x5/4*a3/2*c - [Grünbaumian]
x3/2x5/2o5/4o5/4*a3/2*c - [Grünbaumian]
x3/2o5/2x5/4o5/4*a3/2*c - [Grünbaumian]
x3/2o5/2o5/4x5/4*a3/2*c - [Grünbaumian]
o3/2x5/2x5/4o5/4*a3/2*c - [Grünbaumian]
o3/2x5/2o5/4x5/4*a3/2*c -
o3/2o5/2x5/4x5/4*a3/2*c - [Grünbaumian]
x3/2x5/2x5/4o5/4*a3/2*c - [Grünbaumian]
x3/2x5/2o5/4x5/4*a3/2*c - [Grünbaumian]
x3/2o5/2x5/4x5/4*a3/2*c - [Grünbaumian]
o3/2x5/2x5/4x5/4*a3/2*c - [Grünbaumian]
x3/2x5/2x5/4x5/4*a3/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o5o5/2o5o5/2*a3/2*c   (up)

  o5o5/2o5o5/2*a3/2*c (µ=70) o5o5/3o5o5/3*a3*c (µ=190) o5o5/3o5/4o5/2*a3*c (µ=290)
quasiregulars
x5o5/2o5o5/2*a3/2*c - (contains cid)
o5x5/2o5o5/2*a3/2*c - sishi+gaghi+idhi
x5o5/3o5o5/3*a3*c - (contains cid)
o5x5/3o5o5/3*a3*c - sishi+gaghi+idhi
x5o5/3o5/4o5/2*a3*c - (contains cid)
o5x5/3o5/4o5/2*a3*c - sishi+gaghi+idhi
o5o5/3x5/4o5/2*a3*c - (contains cid)
o5o5/3o5/4x5/2*a3*c - sishi+gaghi+idhi
other
Wythoffians
x5x5/2o5o5/2*a3/2*c - (contains gacid)
x5o5/2x5o5/2*a3/2*c - [Grünbaumian]
x5o5/2o5x5/2*a3/2*c - [Grünbaumian]
o5x5/2o5x5/2*a3/2*c - "2ridditdy"
x5x5/2x5o5/2*a3/2*c - [Grünbaumian]
x5x5/2o5x5/2*a3/2*c - [Grünbaumian]
x5x5/2x5x5/2*a3/2*c - [Grünbaumian]
x5x5/3o5o5/3*a3*c - (contains gacid)
x5o5/3x5o5/3*a3*c - "2dittafady"
x5o5/3o5x5/3*a3*c - (contains cid)
o5x5/3o5x5/3*a3*c -
x5x5/3x5o5/3*a3*c - ebdah hithi
x5x5/3o5x5/3*a3*c -
x5x5/3x5x5/3*a3*c - "2affidhi"
x5x5/3o5/4o5/2*a3*c - (contains gacid)
x5o5/3x5/4o5/2*a3*c - "2dittafady"
x5o5/3o5/4x5/2*a3*c - [Grünbaumian]
o5x5/3x5/4o5/2*a3*c -
o5x5/3o5/4x5/2*a3*c -
o5o5/3x5/4x5/2*a3*c - [Grünbaumian]
x5x5/3x5/4o5/2*a3*c - ebdah hithi
x5x5/3o5/4x5/2*a3*c - [Grünbaumian]
x5o5/3x5/4x5/2*a3*c - [Grünbaumian]
o5x5/3x5/4x5/2*a3*c - [Grünbaumian]
x5x5/3x5/4x5/2*a3*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o5o5/2o5/4o5/3*a3/2*c (µ=890) o5/4o5/2o5/4o5/2*a3*c (µ=1630) o5/4o5/3o5/4o5/3*a3/2*c (µ=2950)
quasiregulars
x5o5/2o5/4o5/3*a3/2*c - (contains cid)
o5x5/2o5/4o5/3*a3/2*c - sishi+gaghi+idhi
o5o5/2x5/4o5/3*a3/2*c - (contains cid)
o5o5/2o5/4x5/3*a3/2*c - sishi+gaghi+idhi
x5/4o5/2o5/4o5/2*a3*c - (contains cid)
o5/4x5/2o5/4o5/2*a3*c - sishi+gaghi+idhi
x5/4o5/3o5/4o5/3*a3/2*c - (contains cid)
o5/4x5/3o5/4o5/3*a3/2*c - sishi+gaghi+idhi
other
Wythoffians
x5x5/2o5/4o5/3*a3/2*c - (contains gacid)
x5o5/2x5/4o5/3*a3/2*c - [Grünbaumian]
x5o5/2o5/4x5/3*a3/2*c - (contains cid)
o5x5/2x5/4o5/3*a3/2*c - [Grünbaumian]
o5x5/2o5/4x5/3*a3/2*c -
o5o5/2x5/4x5/3*a3/2*c - [Grünbaumian]
x5x5/2x5/4o5/3*a3/2*c - [Grünbaumian]
x5x5/2o5/4x5/3*a3/2*c -
x5o5/2x5/4x5/3*a3/2*c - [Grünbaumian]
o5x5/2x5/4x5/3*a3/2*c - [Grünbaumian]
x5x5/2x5/4x5/3*a3/2*c - [Grünbaumian]
x5/4x5/2o5/4o5/2*a3*c - [Grünbaumian]
x5/4o5/2x5/4o5/2*a3*c - "2dittafady"
x5/4o5/2o5/4x5/2*a3*c - [Grünbaumian]
o5/4x5/2o5/4x5/2*a3*c -
x5/4x5/2x5/4o5/2*a3*c - [Grünbaumian]
x5/4x5/2o5/4x5/2*a3*c - [Grünbaumian]
x5/4x5/2x5/4x5/2*a3*c - [Grünbaumian]
x5/4x5/3o5/4o5/3*a3/2*c - [Grünbaumian]
x5/4o5/3x5/4o5/3*a3/2*c - [Grünbaumian]
x5/4o5/3o5/4x5/3*a3/2*c - (contains cid)
o5/4x5/3o5/4x5/3*a3/2*c -
x5/4x5/3x5/4o5/3*a3/2*c - [Grünbaumian]
x5/4x5/3o5/4x5/3*a3/2*c - [Grünbaumian]
x5/4x5/3x5/4x5/3*a3/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3/2o3/2o5*a5*c   (up)

  o3o3/2o3/2o5*a5*c (µ=21) o3o3o3o5*a5/4*c (µ=99) o3/2o3o3/2o5*a5*c (µ=219) o3/2o3o3o5/4*a5*c (µ=501)
quasiregulars
x3o3/2o3/2o5*a5*c - (contains "2doe")
o3x3/2o3/2o5*a5*c - (contains "2gike")
o3o3/2x3/2o5*a5*c - (contains cid)
o3o3/2o3/2x5*a5*c - (contains cid)
x3o3o3o5*a5/4*c - (contains "2doe")
o3x3o3o5*a5/4*c - (contains "2gike")
o3o3x3o5*a5/4*c - (contains cid)
o3o3o3x5*a5/4*c - (contains cid)
x3/2o3o3/2o5*a5*c - (contains "2doe")
o3/2x3o3/2o5*a5*c - (contains "2gike")
o3/2o3x3/2o5*a5*c - (contains cid)
o3/2o3o3/2x5*a5*c - (contains cid)
x3/2o3o3o5/4*a5*c - (contains "2doe")
o3/2x3o3o5/4*a5*c - (contains "2gike")
o3/2o3x3o5/4*a5*c - (contains cid)
o3/2o3o3x5/4*a5*c - (contains cid)
other
Wythoffians
x3x3/2o3/2o5*a5*c - (contains "2doe")
x3o3/2x3/2o5*a5*c - (contains "2seihid")
x3o3/2o3/2x5*a5*c - stut xethi
o3x3/2x3/2o5*a5*c - [Grünbaumian]
o3x3/2o3/2x5*a5*c -
o3o3/2x3/2x5*a5*c - [Grünbaumian]
x3x3/2x3/2o5*a5*c - [Grünbaumian]
x3x3/2o3/2x5*a5*c - sik vixathi
x3o3/2x3/2x5*a5*c - [Grünbaumian]
o3x3/2x3/2x5*a5*c - [Grünbaumian]
x3x3/2x3/2x5*a5*c - [Grünbaumian]
x3x3o3o5*a5/4*c - (contains "2doe")
x3o3x3o5*a5/4*c - [Grünbaumian]
x3o3o3x5*a5/4*c - stut xethi
o3x3x3o5*a5/4*c - (contains cid)
o3x3o3x5*a5/4*c -
o3o3x3x5*a5/4*c - (contains "2gidhei")
x3x3x3o5*a5/4*c - [Grünbaumian]
x3x3o3x5*a5/4*c - sik vixathi
x3o3x3x5*a5/4*c - [Grünbaumian]
o3x3x3x5*a5/4*c -
x3x3x3x5*a5/4*c - [Grünbaumian]
x3/2x3o3/2o5*a5*c - [Grünbaumian]
x3/2o3x3/2o5*a5*c - (contains "2seihid")
x3/2o3o3/2x5*a5*c - stut xethi
o3/2x3x3/2o5*a5*c - (contains cid)
o3/2x3o3/2x5*a5*c -
o3/2o3x3/2x5*a5*c - [Grünbaumian]
x3/2x3x3/2o5*a5*c - [Grünbaumian]
x3/2x3o3/2x5*a5*c - [Grünbaumian]
x3/2o3x3/2x5*a5*c - [Grünbaumian]
o3/2x3x3/2x5*a5*c - [Grünbaumian]
x3/2x3x3/2x5*a5*c - [Grünbaumian]
x3/2x3o3o5/4*a5*c - [Grünbaumian]
x3/2o3x3o5/4*a5*c - (contains "2seihid")
x3/2o3o3x5/4*a5*c - [Grünbaumian]
o3/2x3x3o5/4*a5*c - (contains cid)
o3/2x3o3x5/4*a5*c -
o3/2o3x3x5/4*a5*c - (contains "2gidhei")
x3/2x3x3o5/4*a5*c - [Grünbaumian]
x3/2x3o3x5/4*a5*c - [Grünbaumian]
x3/2o3x3x5/4*a5*c - [Grünbaumian]
o3/2x3x3x5/4*a5*c -
x3/2x3x3x5/4*a5*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3o3/2o3o5/4*a5*c (µ=699) o3/2o3/2o3o5*a5/4*c (µ=1101) o3o3o3/2o5/4*a5/4*c (µ=1581) o3/2o3/2o3/2o5/4*a5/4*c (µ=2979)
quasiregulars
x3o3/2o3o5/4*a5*c - (contains "2doe")
o3x3/2o3o5/4*a5*c - (contains "2gike")
o3o3/2x3o5/4*a5*c - (contains cid)
o3o3/2o3x5/4*a5*c - (contains cid)
x3/2o3/2o3o5*a5/4*c - (contains "2doe")
o3/2x3/2o3o5*a5/4*c - (contains "2gike")
o3/2o3/2x3o5*a5/4*c - (contains cid)
o3/2o3/2o3x5*a5/4*c - (contains cid)
x3o3o3/2o5/4*a5/4*c - (contains "2doe")
o3x3o3/2o5/4*a5/4*c - (contains "2gike")
o3o3x3/2o5/4*a5/4*c - (contains cid)
o3o3o3/2x5/4*a5/4*c - (contains cid)
x3/2o3/2o3/2o5/4*a5/4*c - (contains "2doe")
o3/2x3/2o3/2o5/4*a5/4*c - (contains "2gike")
o3/2o3/2x3/2o5/4*a5/4*c - (contains cid)
o3/2o3/2o3/2x5/4*a5/4*c - (contains cid)
other
Wythoffians
x3x3/2o3o5/4*a5*c - (contains "2doe")
x3o3/2x3o5/4*a5*c - (contains "2seihid")
x3o3/2o3x5/4*a5*c - [Grünbaumian]
o3x3/2x3o5/4*a5*c - [Grünbaumian]
o3x3/2o3x5/4*a5*c -
o3o3/2x3x5/4*a5*c - (contains "2gidhei")
x3x3/2x3o5/4*a5*c - [Grünbaumian]
x3x3/2o3x5/4*a5*c - [Grünbaumian]
x3o3/2x3x5/4*a5*c - [Grünbaumian]
o3x3/2x3x5/4*a5*c - [Grünbaumian]
x3x3/2x3x5/4*a5*c - [Grünbaumian]
x3/2x3/2o3o5*a5/4*c - [Grünbaumian]
x3/2o3/2x3o5*a5/4*c - [Grünbaumian]
x3/2o3/2o3x5*a5/4*c - stut xethi
o3/2x3/2x3o5*a5/4*c - [Grünbaumian]
o3/2x3/2o3x5*a5/4*c -
o3/2o3/2x3x5*a5/4*c - (contains "2gidhei")
x3/2x3/2x3o5*a5/4*c - [Grünbaumian]
x3/2x3/2o3x5*a5/4*c - [Grünbaumian]
x3/2o3/2x3x5*a5/4*c - [Grünbaumian]
o3/2x3/2x3x5*a5/4*c - [Grünbaumian]
x3/2x3/2x3x5*a5/4*c - [Grünbaumian]
x3x3o3/2o5/4*a5/4*c - (contains "2doe")
x3o3x3/2o5/4*a5/4*c - [Grünbaumian]
x3o3o3/2x5/4*a5/4*c - [Grünbaumian]
o3x3x3/2o5/4*a5/4*c - (contains cid)
o3x3o3/2x5/4*a5/4*c -
o3o3x3/2x5/4*a5/4*c - [Grünbaumian]
x3x3x3/2o5/4*a5/4*c - [Grünbaumian]
x3x3o3/2x5/4*a5/4*c - [Grünbaumian]
x3o3x3/2x5/4*a5/4*c - [Grünbaumian]
o3x3x3/2x5/4*a5/4*c - [Grünbaumian]
x3x3x3/2x5/4*a5/4*c - [Grünbaumian]
x3/2x3/2o3/2o5/4*a5/4*c - [Grünbaumian]
x3/2o3/2x3/2o5/4*a5/4*c - [Grünbaumian]
x3/2o3/2o3/2x5/4*a5/4*c - [Grünbaumian]
o3/2x3/2x3/2o5/4*a5/4*c - [Grünbaumian]
o3/2x3/2o3/2x5/4*a5/4*c -
o3/2o3/2x3/2x5/4*a5/4*c - [Grünbaumian]
x3/2x3/2x3/2o5/4*a5/4*c - [Grünbaumian]
x3/2x3/2o3/2x5/4*a5/4*c - [Grünbaumian]
x3/2o3/2x3/2x5/4*a5/4*c - [Grünbaumian]
o3/2x3/2x3/2x5/4*a5/4*c - [Grünbaumian]
x3/2x3/2x3/2x5/4*a5/4*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3o3o5/3*a5/2*c   (up)

  o3o3o3o5/3*a5/2*c (µ=69) o3o3o3/2o5/2*a5/2*c (µ=171) o3/2o3o3o5/2*a5/3*c (µ=531) o3o3/2o3o5/2*a5/3*c (µ=669)
quasiregulars
x3o3o3o5/3*a5/2*c - (contains "2gissid")
o3x3o3o5/3*a5/2*c - (contains "2ike")
o3o3x3o5/3*a5/2*c - (contains gacid)
o3o3o3x5/3*a5/2*c - (contains gacid)
x3o3o3/2o5/2*a5/2*c - (contains "2gissid")
o3x3o3/2o5/2*a5/2*c - (contains "2ike")
o3o3x3/2o5/2*a5/2*c - (contains gacid)
o3o3o3/2x5/2*a5/2*c - (contains gacid)
x3/2o3o3o5/2*a5/3*c - (contains "2gissid")
o3/2x3o3o5/2*a5/3*c - (contains "2ike")
o3/2o3x3o5/2*a5/3*c - (contains gacid)
o3/2o3o3x5/2*a5/3*c - (contains gacid)
x3o3/2o3o5/2*a5/3*c - (contains "2gissid")
o3x3/2o3o5/2*a5/3*c - (contains "2ike")
o3o3/2x3o5/2*a5/3*c - (contains gacid)
o3o3/2o3x5/2*a5/3*c - (contains gacid)
other
Wythoffians
x3x3o3o5/3*a5/2*c - (contains "2gissid")
x3o3x3o5/3*a5/2*c - [Grünbaumian]
x3o3o3x5/3*a5/2*c - getit xethi
o3x3x3o5/3*a5/2*c - (contains gacid)
o3x3o3x5/3*a5/2*c -
o3o3x3x5/3*a5/2*c - (contains "2sidhei")
x3x3x3o5/3*a5/2*c - [Grünbaumian]
x3x3o3x5/3*a5/2*c - gik vixathi
x3o3x3x5/3*a5/2*c - [Grünbaumian]
o3x3x3x5/3*a5/2*c -
x3x3x3x5/3*a5/2*c - [Grünbaumian]
x3x3o3/2o5/2*a5/2*c - (contains "2gissid")
x3o3x3/2o5/2*a5/2*c - [Grünbaumian]
x3o3o3/2x5/2*a5/2*c - [Grünbaumian]
o3x3x3/2o5/2*a5/2*c - (contains gacid)
o3x3o3/2x5/2*a5/2*c -
o3o3x3/2x5/2*a5/2*c - [Grünbaumian]
x3x3x3/2o5/2*a5/2*c - [Grünbaumian]
x3x3o3/2x5/2*a5/2*c - [Grünbaumian]
x3o3x3/2x5/2*a5/2*c - [Grünbaumian]
o3x3x3/2x5/2*a5/2*c - [Grünbaumian]
x3x3x3/2x5/2*a5/2*c - [Grünbaumian]
x3/2x3o3o5/2*a5/3*c - [Grünbaumian]
x3/2o3x3o5/2*a5/3*c - (contains "2geihid")
x3/2o3o3x5/2*a5/3*c - [Grünbaumian]
o3/2x3x3o5/2*a5/3*c - (contains gacid)
o3/2x3o3x5/2*a5/3*c -
o3/2o3x3x5/2*a5/3*c - (contains "2sidhei")
x3/2x3x3o5/2*a5/3*c - [Grünbaumian]
x3/2x3o3x5/2*a5/3*c - [Grünbaumian]
x3/2o3x3x5/2*a5/3*c - [Grünbaumian]
o3/2x3x3x5/2*a5/3*c -
x3/2x3x3x5/2*a5/3*c - [Grünbaumian]
x3x3/2o3o5/2*a5/3*c - (contains "2gissid")
x3o3/2x3o5/2*a5/3*c - (contains "2geihid")
x3o3/2o3x5/2*a5/3*c - [Grünbaumian]
o3x3/2x3o5/2*a5/3*c - [Grünbaumian]
o3x3/2o3x5/2*a5/3*c -
o3o3/2x3x5/2*a5/3*c - (contains "2sidhei")
x3x3/2x3o5/2*a5/3*c - [Grünbaumian]
x3x3/2o3x5/2*a5/3*c - [Grünbaumian]
x3o3/2x3x5/2*a5/3*c - [Grünbaumian]
o3x3/2x3x5/2*a5/3*c - [Grünbaumian]
x3x3/2x3x5/2*a5/3*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3/2o3/2o3o5/3*a5/2*c (µ=1131) o3o3/2o3/2o5/3*a5/3*c (µ=1491) o3/2o3/2o3/2o5/2*a5/2*c (µ=1509) o3/2o3o3/2o5/3*a5/3*c (µ=1629)
quasiregulars
x3/2o3/2o3o5/3*a5/2*c - (contains "2gissid")
o3/2x3/2o3o5/3*a5/2*c - (contains "2ike")
o3/2o3/2x3o5/3*a5/2*c - (contains gacid)
o3/2o3/2o3x5/3*a5/2*c - (contains gacid)
x3o3/2o3/2o5/3*a5/3*c - (contains "2gissid")
o3x3/2o3/2o5/3*a5/3*c - (contains "2ike")
o3o3/2x3/2o5/3*a5/3*c - (contains gacid)
o3o3/2o3/2x5/3*a5/3*c - (contains gacid)
x3/2o3/2o3/2o5/2*a5/2*c - (contains "2gissid")
o3/2x3/2o3/2o5/2*a5/2*c - (contains "2ike")
o3/2o3/2x3/2o5/2*a5/2*c - (contains gacid)
o3/2o3/2o3/2x5/2*a5/2*c - (contains gacid)
x3/2o3o3/2o5/3*a5/3*c - (contains "2gissid")
o3/2x3o3/2o5/3*a5/3*c - (contains "2ike")
o3/2o3x3/2o5/3*a5/3*c - (contains gacid)
o3/2o3o3/2x5/3*a5/3*c - (contains gacid)
other
Wythoffians
x3/2x3/2o3o5/3*a5/2*c - [Grünbaumian]
x3/2o3/2x3o5/3*a5/2*c - [Grünbaumian]
x3/2o3/2o3x5/3*a5/2*c - getit xethi
o3/2x3/2x3o5/3*a5/2*c - [Grünbaumian]
o3/2x3/2o3x5/3*a5/2*c -
o3/2o3/2x3x5/3*a5/2*c - (contains "2sidhei")
x3/2x3/2x3o5/3*a5/2*c - [Grünbaumian]
x3/2x3/2o3x5/3*a5/2*c - [Grünbaumian]
x3/2o3/2x3x5/3*a5/2*c - [Grünbaumian]
o3/2x3/2x3x5/3*a5/2*c - [Grünbaumian]
x3/2x3/2x3x5/3*a5/2*c - [Grünbaumian]
x3x3/2o3/2o5/3*a5/3*c - (contains "2gissid")
x3o3/2x3/2o5/3*a5/3*c - (contains "2geihid")
x3o3/2o3/2x5/3*a5/3*c - getit xethi
o3x3/2x3/2o5/3*a5/3*c - [Grünbaumian]
o3x3/2o3/2x5/3*a5/3*c -
o3o3/2x3/2x5/3*a5/3*c - [Grünbaumian]
x3x3/2x3/2o5/3*a5/3*c - [Grünbaumian]
x3x3/2o3/2x5/3*a5/3*c - gik vixathi
x3o3/2x3/2x5/3*a5/3*c - [Grünbaumian]
o3x3/2x3/2x5/3*a5/3*c - [Grünbaumian]
x3x3/2x3/2x5/3*a5/3*c - [Grünbaumian]
x3/2x3/2o3/2o5/2*a5/2*c - [Grünbaumian]
x3/2o3/2x3/2o5/2*a5/2*c - [Grünbaumian]
x3/2o3/2o3/2x5/2*a5/2*c - [Grünbaumian]
o3/2x3/2x3/2o5/2*a5/2*c - [Grünbaumian]
o3/2x3/2o3/2x5/2*a5/2*c -
o3/2o3/2x3/2x5/2*a5/2*c - [Grünbaumian]
x3/2x3/2x3/2o5/2*a5/2*c - [Grünbaumian]
x3/2x3/2o3/2x5/2*a5/2*c - [Grünbaumian]
x3/2o3/2x3/2x5/2*a5/2*c - [Grünbaumian]
o3/2x3/2x3/2x5/2*a5/2*c - [Grünbaumian]
x3/2x3/2x3/2x5/2*a5/2*c - [Grünbaumian]
x3/2x3o3/2o5/3*a5/3*c - [Grünbaumian]
x3/2o3x3/2o5/3*a5/3*c - (contains "2geihid")
x3/2o3o3/2x5/3*a5/3*c - getit xethi
o3/2x3x3/2o5/3*a5/3*c - (contains gacid)
o3/2x3o3/2x5/3*a5/3*c -
o3/2o3x3/2x5/3*a5/3*c - [Grünbaumian]
x3/2x3x3/2o5/3*a5/3*c - [Grünbaumian]
x3/2x3o3/2x5/3*a5/3*c - [Grünbaumian]
x3/2o3x3/2x5/3*a5/3*c - [Grünbaumian]
o3/2x3x3/2x5/3*a5/3*c - [Grünbaumian]
x3/2x3x3/2x5/3*a5/3*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3/2o3o3o5/3*a5*c   (up)

  o3/2o3o3o5/3*a5*c (µ=181) o3o3/2o3o5/3*a5*c (µ=299) o3o3o3o5/2*a5/4*c (µ=419) o3o3/2o3/2o5/2*a5*c (µ=421)
quasiregulars
x3/2o3o3o5/3*a5*c - gardatady+1440{5}
o3/2x3o3o5/3*a5*c - (contains "2gike")
o3/2o3x3o5/3*a5*c - (contains cid)
o3/2o3o3x5/3*a5*c - (contains gacid)
x3o3/2o3o5/3*a5*c - gardatady+1440{5}
o3x3/2o3o5/3*a5*c - (contains "2gike")
o3o3/2x3o5/3*a5*c - (contains cid)
o3o3/2o3x5/3*a5*c - (contains gacid)
x3o3o3o5/2*a5/4*c - gardatady+1440{5}
o3x3o3o5/2*a5/4*c - (contains "2gike")
o3o3x3o5/2*a5/4*c - (contains cid)
o3o3o3x5/2*a5/4*c - (contains gacid)
x3o3/2o3/2o5/2*a5*c - gardatady+1440{5}
o3x3/2o3/2o5/2*a5*c - (contains "2gike")
o3o3/2x3/2o5/2*a5*c - (contains cid)
o3o3/2o3/2x5/2*a5*c - (contains gacid)
other
Wythoffians
x3/2x3o3o5/3*a5*c - [Grünbaumian]
x3/2o3x3o5/3*a5*c - (contains "2seihid")
x3/2o3o3x5/3*a5*c - git thixady
o3/2x3x3o5/3*a5*c - (contains cid)
o3/2x3o3x5/3*a5*c -
o3/2o3x3x5/3*a5*c - gefirdit xethi
x3/2x3x3o5/3*a5*c - [Grünbaumian]
x3/2x3o3x5/3*a5*c - [Grünbaumian]
x3/2o3x3x5/3*a5*c - (contains "2seihid")
o3/2x3x3x5/3*a5*c -
x3/2x3x3x5/3*a5*c - [Grünbaumian]
x3x3/2o3o5/3*a5*c - getit thix
x3o3/2x3o5/3*a5*c - (contains "2seihid")
x3o3/2o3x5/3*a5*c - git thixady
o3x3/2x3o5/3*a5*c - [Grünbaumian]
o3x3/2o3x5/3*a5*c -
o3o3/2x3x5/3*a5*c - gefirdit xethi
x3x3/2x3o5/3*a5*c - [Grünbaumian]
x3x3/2o3x5/3*a5*c -
x3o3/2x3x5/3*a5*c - (contains "2seihid")
o3x3/2x3x5/3*a5*c - [Grünbaumian]
x3x3/2x3x5/3*a5*c - [Grünbaumian]
x3x3o3o5/2*a5/4*c - getit thix
x3o3x3o5/2*a5/4*c - [Grünbaumian]
x3o3o3x5/2*a5/4*c - [Grünbaumian]
o3x3x3o5/2*a5/4*c - (contains cid)
o3x3o3x5/2*a5/4*c -
o3o3x3x5/2*a5/4*c - gefirdit xethi
x3x3x3o5/2*a5/4*c - [Grünbaumian]
x3x3o3x5/2*a5/4*c - [Grünbaumian]
x3o3x3x5/2*a5/4*c - [Grünbaumian]
o3x3x3x5/2*a5/4*c -
x3x3x3x5/2*a5/4*c - [Grünbaumian]
x3x3/2o3/2o5/2*a5*c - getit thix
x3o3/2x3/2o5/2*a5*c - (contains "2seihid")
x3o3/2o3/2x5/2*a5*c - [Grünbaumian]
o3x3/2x3/2o5/2*a5*c - [Grünbaumian]
o3x3/2o3/2x5/2*a5*c -
o3o3/2x3/2x5/2*a5*c - [Grünbaumian]
x3x3/2x3/2o5/2*a5*c - [Grünbaumian]
x3x3/2o3/2x5/2*a5*c - [Grünbaumian]
x3o3/2x3/2x5/2*a5*c - [Grünbaumian]
o3x3/2x3/2x5/2*a5*c - [Grünbaumian]
x3x3/2x3/2x5/2*a5*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3/2o3o3/2o5/2*a5*c (µ=539) o3o3o3/2o5/3*a5/4*c (µ=1261) o3/2o3/2o3o5/2*a5/4*c (µ=1501) o3/2o3/2o3/2o5/3*a5/4*c (µ=2579)
quasiregulars
x3/2o3o3/2o5/2*a5*c - gardatady+1440{5}
o3/2x3o3/2o5/2*a5*c - (contains "2gike")
o3/2o3x3/2o5/2*a5*c - (contains cid)
o3/2o3o3/2x5/2*a5*c - (contains gacid)
x3o3o3/2o5/3*a5/4*c - gardatady+1440{5}
o3x3o3/2o5/3*a5/4*c - (contains "2gike")
o3o3x3/2o5/3*a5/4*c - (contains cid)
o3o3o3/2x5/3*a5/4*c - (contains gacid)
x3/2o3/2o3o5/2*a5/4*c - gardatady+1440{5}
o3/2x3/2o3o5/2*a5/4*c - (contains "2gike")
o3/2o3/2x3o5/2*a5/4*c - (contains cid)
o3/2o3/2o3x5/2*a5/4*c - (contains gacid)
x3/2o3/2o3/2o5/3*a5/4*c - gardatady+1440{5}
o3/2x3/2o3/2o5/3*a5/4*c - (contains "2gike")
o3/2o3/2x3/2o5/3*a5/4*c - (contains cid)
o3/2o3/2o3/2x5/3*a5/4*c - (contains gacid)
other
Wythoffians
x3/2x3o3/2o5/2*a5*c - [Grünbaumian]
x3/2o3x3/2o5/2*a5*c - (contains "2seihid")
x3/2o3o3/2x5/2*a5*c - [Grünbaumian]
o3/2x3x3/2o5/2*a5*c - (contains cid)
o3/2x3o3/2x5/2*a5*c -
o3/2o3x3/2x5/2*a5*c - [Grünbaumian]
x3/2x3x3/2o5/2*a5*c - [Grünbaumian]
x3/2x3o3/2x5/2*a5*c - [Grünbaumian]
x3/2o3x3/2x5/2*a5*c - [Grünbaumian]
o3/2x3x3/2x5/2*a5*c - [Grünbaumian]
x3/2x3x3/2x5/2*a5*c - [Grünbaumian]
x3x3o3/2o5/3*a5/4*c - getit thix
x3o3x3/2o5/3*a5/4*c - [Grünbaumian]
x3o3o3/2x5/3*a5/4*c - git thixady
o3x3x3/2o5/3*a5/4*c - (contains cid)
o3x3o3/2x5/3*a5/4*c -
o3o3x3/2x5/3*a5/4*c - [Grünbaumian]
x3x3x3/2o5/3*a5/4*c - [Grünbaumian]
x3x3o3/2x5/3*a5/4*c -
x3o3x3/2x5/3*a5/4*c - [Grünbaumian]
o3x3x3/2x5/3*a5/4*c - [Grünbaumian]
x3x3x3/2x5/3*a5/4*c - [Grünbaumian]
x3/2x3/2o3o5/2*a5/4*c - [Grünbaumian]
x3/2o3/2x3o5/2*a5/4*c - [Grünbaumian]
x3/2o3/2o3x5/2*a5/4*c - [Grünbaumian]
o3/2x3/2x3o5/2*a5/4*c - [Grünbaumian]
o3/2x3/2o3x5/2*a5/4*c -
o3/2o3/2x3x5/2*a5/4*c - gefirdit xethi
x3/2x3/2x3o5/2*a5/4*c - [Grünbaumian]
x3/2x3/2o3x5/2*a5/4*c - [Grünbaumian]
x3/2o3/2x3x5/2*a5/4*c - [Grünbaumian]
o3/2x3/2x3x5/2*a5/4*c - [Grünbaumian]
x3/2x3/2x3x5/2*a5/4*c - [Grünbaumian]
x3/2x3/2o3/2o5/3*a5/4*c - [Grünbaumian]
x3/2o3/2x3/2o5/3*a5/4*c - [Grünbaumian]
x3/2o3/2o3/2x5/3*a5/4*c - git thixady
o3/2x3/2x3/2o5/3*a5/4*c - [Grünbaumian]
o3/2x3/2o3/2x5/3*a5/4*c -
o3/2o3/2x3/2x5/3*a5/4*c - [Grünbaumian]
x3/2x3/2x3/2o5/3*a5/4*c - [Grünbaumian]
x3/2x3/2o3/2x5/3*a5/4*c - [Grünbaumian]
x3/2o3/2x3/2x5/3*a5/4*c - [Grünbaumian]
o3/2x3/2x3/2x5/3*a5/4*c - [Grünbaumian]
x3/2x3/2x3/2x5/3*a5/4*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3o3/2o5*a5/2*c   (up)

  o3o3o3/2o5*a5/2*c (µ=11) o3o3/2o3o5*a5/3*c (µ=109) o3o3o3o5/4*a5/2*c (µ=229) o3/2o3o3o5*a5/3*c (µ=371)
quasiregulars
x3o3o3/2o5*a5/2*c - sirdatady+1440{5/2}
o3x3o3/2o5*a5/2*c - (contains "2ike")
o3o3x3/2o5*a5/2*c - (contains gacid)
o3o3o3/2x5*a5/2*c - (contains cid)
o3o3/2o3o5*a5/3*c - sirdatady+1440{5/2}
o3x3/2o3o5*a5/3*c - (contains "2ike")
o3o3/2x3o5*a5/3*c - (contains gacid)
o3o3/2o3x5*a5/3*c - (contains cid)
x3o3o3o5/4*a5/2*c - sirdatady+1440{5/2}
o3x3o3o5/4*a5/2*c - (contains "2ike")
o3o3x3o5/4*a5/2*c - (contains gacid)
o3o3o3x5/4*a5/2*c - (contains cid)
x3/2o3o3o5*a5/3*c - sirdatady+1440{5/2}
o3/2x3o3o5*a5/3*c - (contains "2ike")
o3/2o3x3o5*a5/3*c - (contains gacid)
o3/2o3o3x5*a5/3*c - (contains cid)
other
Wythoffians
x3x3o3/2o5*a5/2*c - stut thix
x3o3x3/2o5*a5/2*c - [Grünbaumian]
x3o3o3/2x5*a5/2*c - sit thixady
o3x3x3/2o5*a5/2*c - (contains gacid)
o3x3o3/2x5*a5/2*c -
o3o3x3/2x5*a5/2*c - [Grünbaumian]
x3x3x3/2o5*a5/2*c - [Grünbaumian]
x3x3o3/2x5*a5/2*c -
x3o3x3/2x5*a5/2*c - [Grünbaumian]
o3x3x3/2x5*a5/2*c - [Grünbaumian]
x3x3x3/2x5*a5/2*c - [Grünbaumian]
x3x3/2o3o5*a5/3*c - stut thix
x3o3/2x3o5*a5/3*c - (contains "2geihid")
x3o3/2o3x5*a5/3*c - sit thixady
o3x3/2x3o5*a5/3*c - [Grünbaumian]
o3x3/2o3x5*a5/3*c -
o3o3/2x3x5*a5/3*c - gefridit xethi
x3x3/2x3o5*a5/3*c - [Grünbaumian]
x3x3/2o3x5*a5/3*c -
x3o3/2x3x5*a5/3*c - (contains "2geihid")
o3x3/2x3x5*a5/3*c - [Grünbaumian]
x3x3/2x3x5*a5/3*c - [Grünbaumian]
x3x3o3o5/4*a5/2*c - stut thix
x3o3x3o5/4*a5/2*c - [Grünbaumian]
x3o3o3x5/4*a5/2*c - [Grünbaumian]
o3x3x3o5/4*a5/2*c - (contains gacid)
o3x3o3x5/4*a5/2*c -
o3o3x3x5/4*a5/2*c - gefridit xethi
x3x3x3o5/4*a5/2*c - [Grünbaumian]
x3x3o3x5/4*a5/2*c - [Grünbaumian]
x3o3x3x5/4*a5/2*c - [Grünbaumian]
o3x3x3x5/4*a5/2*c -
x3x3x3x5/4*a5/2*c - [Grünbaumian]
x3/2x3o3o5*a5/3*c - [Grünbaumian]
x3/2o3x3o5*a5/3*c - (contains "2geihid")
x3/2o3o3x5*a5/3*c - sit thixady
o3/2x3x3o5*a5/3*c - (contains gacid)
o3/2x3o3x5*a5/3*c -
o3/2o3x3x5*a5/3*c - gefridit xethi
x3/2x3x3o5*a5/3*c - [Grünbaumian]
x3/2x3o3x5*a5/3*c - [Grünbaumian]
x3/2o3x3x5*a5/3*c - (contains "2geihid")
o3/2x3x3x5*a5/3*c -
x3/2x3x3x5*a5/3*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3/2o3/2o3/2o5*a5/2*c (µ=949) o3/2o3/2o3o5/4*a5/2*c (µ=1691) o3/2o3o3/2o5/4*a5/3*c (µ=1789) o3o3/2o3/2o5/4*a5/3*c (µ=2051)
quasiregulars
x3/2o3/2o3/2o5*a5/2*c - sirdatady+1440{5/2}
o3/2x3/2o3/2o5*a5/2*c - (contains "2ike")
o3/2o3/2x3/2o5*a5/2*c - (contains gacid)
o3/2o3/2o3/2x5*a5/2*c - (contains cid)
x3/2o3/2o3o5/4*a5/2*c - sirdatady+1440{5/2}
o3/2x3/2o3o5/4*a5/2*c - (contains "2ike")
o3/2o3/2x3o5/4*a5/2*c - (contains gacid)
o3/2o3/2o3x5/4*a5/2*c - (contains cid)
x3/2o3o3/2o5/4*a5/3*c - sirdatady+1440{5/2}
o3/2x3o3/2o5/4*a5/3*c - (contains "2ike")
o3/2o3x3/2o5/4*a5/3*c - (contains gacid)
o3/2o3o3/2x5/4*a5/3*c - (contains cid)
x3o3/2o3/2o5/4*a5/3*c - sirdatady+1440{5/2}
o3x3/2o3/2o5/4*a5/3*c - (contains "2ike")
o3o3/2x3/2o5/4*a5/3*c - (contains gacid)
o3o3/2o3/2x5/4*a5/3*c - (contains cid)
other
Wythoffians
x3/2x3/2o3/2o5*a5/2*c - [Grünbaumian]
x3/2o3/2x3/2o5*a5/2*c - [Grünbaumian]
x3/2o3/2o3/2x5*a5/2*c - sit thixady
o3/2x3/2x3/2o5*a5/2*c - [Grünbaumian]
o3/2x3/2o3/2x5*a5/2*c -
o3/2o3/2x3/2x5*a5/2*c - [Grünbaumian]
x3/2x3/2x3/2o5*a5/2*c - [Grünbaumian]
x3/2x3/2o3/2x5*a5/2*c - [Grünbaumian]
x3/2o3/2x3/2x5*a5/2*c - [Grünbaumian]
o3/2x3/2x3/2x5*a5/2*c - [Grünbaumian]
x3/2x3/2x3/2x5*a5/2*c - [Grünbaumian]
x3/2x3/2o3o5/4*a5/2*c - [Grünbaumian]
x3/2o3/2x3o5/4*a5/2*c - [Grünbaumian]
x3/2o3/2o3x5/4*a5/2*c - [Grünbaumian]
o3/2x3/2x3o5/4*a5/2*c - [Grünbaumian]
o3/2x3/2o3x5/4*a5/2*c -
o3/2o3/2x3x5/4*a5/2*c - gefridit xethi
x3/2x3/2x3o5/4*a5/2*c - [Grünbaumian]
x3/2x3/2o3x5/4*a5/2*c - [Grünbaumian]
x3/2o3/2x3x5/4*a5/2*c - [Grünbaumian]
o3/2x3/2x3x5/4*a5/2*c - [Grünbaumian]
x3/2x3/2x3x5/4*a5/2*c - [Grünbaumian]
x3/2x3o3/2o5/4*a5/3*c - [Grünbaumian]
x3/2o3x3/2o5/4*a5/3*c - (contains "2geihid")
x3/2o3o3/2x5/4*a5/3*c - [Grünbaumian]
o3/2x3x3/2o5/4*a5/3*c - (contains gacid)
o3/2x3o3/2x5/4*a5/3*c -
o3/2o3x3/2x5/4*a5/3*c - [Grünbaumian]
x3/2x3x3/2o5/4*a5/3*c - [Grünbaumian]
x3/2x3o3/2x5/4*a5/3*c - [Grünbaumian]
x3/2o3x3/2x5/4*a5/3*c - [Grünbaumian]
o3/2x3x3/2x5/4*a5/3*c - [Grünbaumian]
x3/2x3x3/2x5/4*a5/3*c - [Grünbaumian]
x3x3/2o3/2o5/4*a5/3*c - stut thix
x3o3/2x3/2o5/4*a5/3*c - (contains "2geihid")
x3o3/2o3/2x5/4*a5/3*c - [Grünbaumian]
o3x3/2x3/2o5/4*a5/3*c - [Grünbaumian]
o3x3/2o3/2x5/4*a5/3*c -
o3o3/2x3/2x5/4*a5/3*c - [Grünbaumian]
x3x3/2x3/2o5/4*a5/3*c - [Grünbaumian]
x3x3/2o3/2x5/4*a5/3*c - [Grünbaumian]
x3o3/2x3/2x5/4*a5/3*c - [Grünbaumian]
o3x3/2x3/2x5/4*a5/3*c - [Grünbaumian]
x3x3/2x3/2x5/4*a5/3*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3/2o5o5/2o3/2*a5*c   (up)

  o3/2o5o5/2o3/2*a5*c (µ=113) o3/2o5o5/3o3*a5*c (µ=127) o3o5o5/2o3*a5/4*c (µ=247) o3o5/4o5/3o3*a5*c (µ=353)
quasiregulars
x3/2o5o5/2o3/2*a5*c - (contains cid)
o3/2x5o5/2o3/2*a5*c - (contains cid)
o3/2o5x5/2o3/2*a5*c - (contains "2doe")
o3/2o5o5/2x3/2*a5*c - (contains gacid)
x3/2o5o5/3o3*a5*c - (contains cid)
o3/2x5o5/3o3*a5*c - (contains cid)
o3/2o5x5/3o3*a5*c - (contains "2doe")
o3/2o5o5/3x3*a5*c - (contains gacid)
x3o5o5/2o3*a5/4*c - (contains cid)
o3x5o5/2o3*a5/4*c - (contains cid)
o3o5x5/2o3*a5/4*c - (contains "2doe")
o3o5o5/2x3*a5/4*c - (contains gacid)
x3o5/4o5/3o3*a5*c - (contains cid)
o3x5/4o5/3o3*a5*c - (contains cid)
o3o5/4x5/3o3*a5*c - (contains "2doe")
o3o5/4o5/3x3*a5*c - (contains gacid)
other
Wythoffians
x3/2x5o5/2o3/2*a5*c - [Grünbaumian]
x3/2o5x5/2o3/2*a5*c - raffixthi
x3/2o5o5/2x3/2*a5*c - [Grünbaumian]
o3/2x5x5/2o3/2*a5*c - sefradit thix
o3/2x5o5/2x3/2*a5*c -
o3/2o5x5/2x3/2*a5*c - [Grünbaumian]
x3/2x5x5/2o3/2*a5*c - [Grünbaumian]
x3/2x5o5/2x3/2*a5*c - [Grünbaumian]
x3/2o5x5/2x3/2*a5*c - [Grünbaumian]
o3/2x5x5/2x3/2*a5*c - [Grünbaumian]
x3/2x5x5/2x3/2*a5*c - [Grünbaumian]
x3/2x5o5/3o3*a5*c - [Grünbaumian]
x3/2o5x5/3o3*a5*c - raffixthi
x3/2o5o5/3x3*a5*c - (contains cid)
o3/2x5x5/3o3*a5*c - sefradit thix
o3/2x5o5/3x3*a5*c -
o3/2o5x5/3x3*a5*c - (contains "2doe")
x3/2x5x5/3o3*a5*c - [Grünbaumian]
x3/2x5o5/3x3*a5*c - [Grünbaumian]
x3/2o5x5/3x3*a5*c - hixquitixhi
o3/2x5x5/3x3*a5*c -
x3/2x5x5/3x3*a5*c - [Grünbaumian]
x3x5o5/2o3*a5/4*c - (contains cid)
x3o5x5/2o3*a5/4*c - [Grünbaumian]
x3o5o5/2x3*a5/4*c - (contains cid)
o3x5x5/2o3*a5/4*c - sefradit thix
o3x5o5/2x3*a5/4*c -
o3o5x5/2x3*a5/4*c - [Grünbaumian]
x3x5x5/2o3*a5/4*c - [Grünbaumian]
x3x5o5/2x3*a5/4*c -
x3o5x5/2x3*a5/4*c - [Grünbaumian]
o3x5x5/2x3*a5/4*c - [Grünbaumian]
x3x5x5/2x3*a5/4*c - [Grünbaumian]
x3x5/4o5/3o3*a5*c - (contains cid)
x3o5/4x5/3o3*a5*c - raffixthi
x3o5/4o5/3x3*a5*c - (contains cid)
o3x5/4x5/3o3*a5*c - [Grünbaumian]
o3x5/4o5/3x3*a5*c -
o3o5/4x5/3x3*a5*c - (contains "2doe")
x3x5/4x5/3o3*a5*c - [Grünbaumian]
x3x5/4o5/3x3*a5*c -
x3o5/4x5/3x3*a5*c - hixquitixhi
o3x5/4x5/3x3*a5*c - [Grünbaumian]
x3x5/4x5/3x3*a5*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3o5/4o5/2o3/2*a5*c (µ=847) o3o5o5/3o3/2*a5/4*c (µ=953) o3/2o5/4o5/2o3*a5/4*c (µ=1673) o3/2o5/4o5/3o3/2*a5/4*c (µ=2887)
quasiregulars
x3o5/4o5/2o3/2*a5*c - (contains cid)
o3x5/4o5/2o3/2*a5*c - (contains cid)
o3o5/4x5/2o3/2*a5*c - (contains "2doe")
o3o5/4o5/2x3/2*a5*c - (contains gacid)
x3o5o5/3o3/2*a5/4*c - (contains cid)
o3x5o5/3o3/2*a5/4*c - (contains cid)
o3o5x5/3o3/2*a5/4*c - (contains "2doe")
o3o5o5/3x3/2*a5/4*c - (contains gacid)
x3/2o5/4o5/2o3*a5/4*c - (contains cid)
o3/2x5/4o5/2o3*a5/4*c - (contains cid)
o3/2o5/4x5/2o3*a5/4*c - (contains "2doe")
o3/2o5/4o5/2x3*a5/4*c - (contains gacid)
x3/2o5/4o5/3o3/2*a5/4*c - (contains cid)
o3/2x5/4o5/3o3/2*a5/4*c - (contains cid)
o3/2o5/4x5/3o3/2*a5/4*c - (contains "2doe")
o3/2o5/4o5/3x3/2*a5/4*c - (contains gacid)
other
Wythoffians
x3x5/4o5/2o3/2*a5*c - (contains cid)
x3o5/4x5/2o3/2*a5*c - raffixthi
x3o5/4o5/2x3/2*a5*c - [Grünbaumian]
o3x5/4x5/2o3/2*a5*c - [Grünbaumian]
o3x5/4o5/2x3/2*a5*c -
o3o5/4x5/2x3/2*a5*c - [Grünbaumian]
x3x5/4x5/2o3/2*a5*c - [Grünbaumian]
x3x5/4o5/2x3/2*a5*c - [Grünbaumian]
x3o5/4x5/2x3/2*a5*c - [Grünbaumian]
o3x5/4x5/2x3/2*a5*c - [Grünbaumian]
x3x5/4x5/2x3/2*a5*c - [Grünbaumian]
x3x5o5/3o3/2*a5/4*c - (contains cid)
x3o5x5/3o3/2*a5/4*c - [Grünbaumian]
x3o5o5/3x3/2*a5/4*c - [Grünbaumian]
o3x5x5/3o3/2*a5/4*c - sefradit thix
o3x5o5/3x3/2*a5/4*c -
o3o5x5/3x3/2*a5/4*c - (contains "2doe")
x3x5x5/3o3/2*a5/4*c - [Grünbaumian]
x3x5o5/3x3/2*a5/4*c - [Grünbaumian]
x3o5x5/3x3/2*a5/4*c - [Grünbaumian]
o3x5x5/3x3/2*a5/4*c -
x3x5x5/3x3/2*a5/4*c - [Grünbaumian]
x3/2x5/4o5/2o3*a5/4*c - [Grünbaumian]
x3/2o5/4x5/2o3*a5/4*c - [Grünbaumian]
x3/2o5/4o5/2x3*a5/4*c - (contains cid)
o3/2x5/4x5/2o3*a5/4*c - [Grünbaumian]
o3/2x5/4o5/2x3*a5/4*c -
o3/2o5/4x5/2x3*a5/4*c - [Grünbaumian]
x3/2x5/4x5/2o3*a5/4*c - [Grünbaumian]
x3/2x5/4o5/2x3*a5/4*c - [Grünbaumian]
x3/2o5/4x5/2x3*a5/4*c - [Grünbaumian]
o3/2x5/4x5/2x3*a5/4*c - [Grünbaumian]
x3/2x5/4x5/2x3*a5/4*c - [Grünbaumian]
x3/2x5/4o5/3o3/2*a5/4*c - [Grünbaumian]
x3/2o5/4x5/3o3/2*a5/4*c - [Grünbaumian]
x3/2o5/4o5/3x3/2*a5/4*c - [Grünbaumian]
o3/2x5/4x5/3o3/2*a5/4*c - [Grünbaumian]
o3/2x5/4o5/3x3/2*a5/4*c -
o3/2o5/4x5/3x3/2*a5/4*c - (contains "2doe")
x3/2x5/4x5/3o3/2*a5/4*c - [Grünbaumian]
x3/2x5/4o5/3x3/2*a5/4*c - [Grünbaumian]
x3/2o5/4x5/3x3/2*a5/4*c - [Grünbaumian]
o3/2x5/4x5/3x3/2*a5/4*c - [Grünbaumian]
x3/2x5/4x5/3x3/2*a5/4*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o5o5/2o3*a5/3*c   (up)

  o3o5o5/2o3*a5/3*c (µ=17) o3/2o5o5/2o3/2*a5/2*c (µ=343) o3o5o5/3o3/2*a5/3*c (µ=463) o3o5/4o5/3o3*a5/2*c (µ=583)
quasiregulars
x3o5o5/2o3*a5/3*c - (contains gacid)
o3x5o5/2o3*a5/3*c - (contains cid)
o3o5x5/2o3*a5/3*c - (contains "2gissid")
o3o5o5/2x3*a5/3*c - (contains gacid)
x3/2o5o5/2o3/2*a5/2*c - (contains gacid)
o3/2x5o5/2o3/2*a5/2*c - (contains cid)
o3/2o5x5/2o3/2*a5/2*c - (contains "2gissid")
o3/2o5o5/2x3/2*a5/2*c - (contains gacid)
x3o5o5/3o3/2*a5/3*c - (contains gacid)
o3x5o5/3o3/2*a5/3*c - (contains cid)
o3o5x5/3o3/2*a5/3*c - (contains "2gissid")
o3o5o5/3x3/2*a5/3*c - (contains gacid)
x3o5/4o5/3o3*a5/2*c - (contains gacid)
o3x5/4o5/3o3*a5/2*c - (contains cid)
o3o5/4x5/3o3*a5/2*c - (contains "2gissid")
o3o5/4o5/3x3*a5/2*c - (contains gacid)
other
Wythoffians
x3x5o5/2o3*a5/3*c - (contains gacid)
x3o5x5/2o3*a5/3*c - affixthi
x3o5o5/2x3*a5/3*c - (contains gacid)
o3x5x5/2o3*a5/3*c - (contains "2gissid")
o3x5o5/2x3*a5/3*c -
o3o5x5/2x3*a5/3*c - [Grünbaumian]
x3x5x5/2o3*a5/3*c - hixtixhi
x3x5o5/2x3*a5/3*c -
x3o5x5/2x3*a5/3*c - [Grünbaumian]
o3x5x5/2x3*a5/3*c - [Grünbaumian]
x3x5x5/2x3*a5/3*c - [Grünbaumian]
x3/2x5o5/2o3/2*a5/2*c - [Grünbaumian]
x3/2o5x5/2o3/2*a5/2*c - [Grünbaumian]
x3/2o5o5/2x3/2*a5/2*c - [Grünbaumian]
o3/2x5x5/2o3/2*a5/2*c - (contains "2gissid")
o3/2x5o5/2x3/2*a5/2*c -
o3/2o5x5/2x3/2*a5/2*c - [Grünbaumian]
x3/2x5x5/2o3/2*a5/2*c - [Grünbaumian]
x3/2x5o5/2x3/2*a5/2*c - [Grünbaumian]
x3/2o5x5/2x3/2*a5/2*c - [Grünbaumian]
o3/2x5x5/2x3/2*a5/2*c - [Grünbaumian]
x3/2x5x5/2x3/2*a5/2*c - [Grünbaumian]
x3x5o5/3o3/2*a5/3*c - (contains gacid)
x3o5x5/3o3/2*a5/3*c - affixthi
x3o5o5/3x3/2*a5/3*c - [Grünbaumian]
o3x5x5/3o3/2*a5/3*c - (contains "2gissid")
o3x5o5/3x3/2*a5/3*c -
o3o5x5/3x3/2*a5/3*c - gefradit thix
x3x5x5/3o3/2*a5/3*c - hixtixhi
x3x5o5/3x3/2*a5/3*c - [Grünbaumian]
x3o5x5/3x3/2*a5/3*c - [Grünbaumian]
o3x5x5/3x3/2*a5/3*c -
x3x5x5/3x3/2*a5/3*c - [Grünbaumian]
x3x5/4o5/3o3*a5/2*c - (contains gacid)
x3o5/4x5/3o3*a5/2*c - [Grünbaumian]
x3o5/4o5/3x3*a5/2*c - (contains gacid)
o3x5/4x5/3o3*a5/2*c - [Grünbaumian]
o3x5/4o5/3x3*a5/2*c -
o3o5/4x5/3x3*a5/2*c - gefradit thix
x3x5/4x5/3o3*a5/2*c - [Grünbaumian]
x3x5/4o5/3x3*a5/2*c -
x3o5/4x5/3x3*a5/2*c - [Grünbaumian]
o3x5/4x5/3x3*a5/2*c - [Grünbaumian]
x3x5/4x5/3x3*a5/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3/2o5o5/3o3*a5/2*c (µ=617) o3/2o5/4o5/2o3*a5/3*c (µ=1183) o3o5/4o5/2o3/2*a5/2*c (µ=1337) o3/2o5/4o5/3o3/2*a5/3*c (µ=2657)
quasiregulars
x3/2o5o5/3o3*a5/2*c - (contains gacid)
o3/2x5o5/3o3*a5/2*c - (contains cid)
o3/2o5x5/3o3*a5/2*c - (contains "2gissid")
o3/2o5o5/3x3*a5/2*c - (contains gacid)
x3/2o5/4o5/2o3*a5/3*c - (contains gacid)
o3/2x5/4o5/2o3*a5/3*c - (contains cid)
o3/2o5/4x5/2o3*a5/3*c - (contains "2gissid")
o3/2o5/4o5/2x3*a5/3*c - (contains gacid)
x3o5/4o5/2o3/2*a5/2*c - (contains gacid)
o3x5/4o5/2o3/2*a5/2*c - (contains cid)
o3o5/4x5/2o3/2*a5/2*c - (contains "2gissid")
o3o5/4o5/2x3/2*a5/2*c - (contains gacid)
x3/2o5/4o5/3o3/2*a5/3*c - (contains gacid)
o3/2x5/4o5/3o3/2*a5/3*c - (contains cid)
o3/2o5/4x5/3o3/2*a5/3*c - (contains "2gissid")
o3/2o5/4o5/3x3/2*a5/3*c - (contains gacid)
other
Wythoffians
x3/2x5o5/3o3*a5/2*c - [Grünbaumian]
x3/2o5x5/3o3*a5/2*c - [Grünbaumian]
x3/2o5o5/3x3*a5/2*c - (contains gacid)
o3/2x5x5/3o3*a5/2*c - (contains "2gissid")
o3/2x5o5/3x3*a5/2*c -
o3/2o5x5/3x3*a5/2*c - gefradit thix
x3/2x5x5/3o3*a5/2*c - [Grünbaumian]
x3/2x5o5/3x3*a5/2*c - [Grünbaumian]
x3/2o5x5/3x3*a5/2*c - [Grünbaumian]
o3/2x5x5/3x3*a5/2*c -
x3/2x5x5/3x3*a5/2*c - [Grünbaumian]
x3/2x5/4o5/2o3*a5/3*c - [Grünbaumian]
x3/2o5/4x5/2o3*a5/3*c - affixthi
x3/2o5/4o5/2x3*a5/3*c - (contains gacid)
o3/2x5/4x5/2o3*a5/3*c - [Grünbaumian]
o3/2x5/4o5/2x3*a5/3*c -
o3/2o5/4x5/2x3*a5/3*c - [Grünbaumian]
x3/2x5/4x5/2o3*a5/3*c - [Grünbaumian]
x3/2x5/4o5/2x3*a5/3*c - [Grünbaumian]
x3/2o5/4x5/2x3*a5/3*c - [Grünbaumian]
o3/2x5/4x5/2x3*a5/3*c - [Grünbaumian]
x3/2x5/4x5/2x3*a5/3*c - [Grünbaumian]
x3x5/4o5/2o3/2*a5/2*c - (contains gacid)
x3o5/4x5/2o3/2*a5/2*c - [Grünbaumian]
x3o5/4o5/2x3/2*a5/2*c - [Grünbaumian]
o3x5/4x5/2o3/2*a5/2*c - [Grünbaumian]
o3x5/4o5/2x3/2*a5/2*c -
o3o5/4x5/2x3/2*a5/2*c - [Grünbaumian]
x3x5/4x5/2o3/2*a5/2*c - [Grünbaumian]
x3x5/4o5/2x3/2*a5/2*c - [Grünbaumian]
x3o5/4x5/2x3/2*a5/2*c - [Grünbaumian]
o3x5/4x5/2x3/2*a5/2*c - [Grünbaumian]
x3x5/4x5/2x3/2*a5/2*c - [Grünbaumian]
x3/2x5/4o5/3o3/2*a5/3*c - [Grünbaumian]
x3/2o5/4x5/3o3/2*a5/3*c - affixthi
x3/2o5/4o5/3x3/2*a5/3*c - [Grünbaumian]
o3/2x5/4x5/3o3/2*a5/3*c - [Grünbaumian]
o3/2x5/4o5/3x3/2*a5/3*c -
o3/2o5/4x5/3x3/2*a5/3*c - gefradit thix
x3/2x5/4x5/3o3/2*a5/3*c - [Grünbaumian]
x3/2x5/4o5/3x3/2*a5/3*c - [Grünbaumian]
x3/2o5/4x5/3x3/2*a5/3*c - [Grünbaumian]
o3/2x5/4x5/3x3/2*a5/3*c - [Grünbaumian]
x3/2x5/4x5/3x3/2*a5/3*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o5o3o5*a5/4*c   (up)

  o3o5o3o5*a5/4*c (µ=22) o3o5/4o3/2o5*a5*c (µ=98) o3/2o5o3/2o5*a5*c (µ=142)
quasiregulars
x3o5o3o5*a5/4*c - (contains "2doe")
o3x5o3o5*a5/4*c - (contains cid)
x3o5/4o3/2o5*a5*c - (contains "2doe")
o3x5/4o3/2o5*a5*c - (contains cid)
o3o5/4x3/2o5*a5*c - (contains "2doe")
o3o5/4o3/2x5*a5*c - (contains cid)
x3/2o5o3/2o5*a5*c - (contains "2doe")
o3/2x5o3/2o5*a5*c - (contains cid)
other
Wythoffians
x3x5o3o5*a5/4*c - (contains "2doe")
x3o5x3o5*a5/4*c - [Grünbaumian]
x3o5o3x5*a5/4*c - (contains cid)
o3x5o3x5*a5/4*c -
x3x5x3o5*a5/4*c - [Grünbaumian]
x3x5o3x5*a5/4*c -
x3x5x3x5*a5/4*c - [Grünbaumian]
x3x5/4o3/2o5*a5*c - (contains "2doe")
x3o5/4x3/2o5*a5*c - 2sadtifady
x3o5/4o3/2x5*a5*c - (contains cid)
o3x5/4x3/2o5*a5*c - [Grünbaumian]
o3x5/4o3/2x5*a5*c -
o3o5/4x3/2x5*a5*c - [Grünbaumian]
x3x5/4x3/2o5*a5*c - [Grünbaumian]
x3x5/4o3/2x5*a5*c -
x3o5/4x3/2x5*a5*c - [Grünbaumian]
o3x5/4x3/2x5*a5*c - [Grünbaumian]
x3x5/4x3/2x5*a5*c - [Grünbaumian]
x3/2x5o3/2o5*a5*c - [Grünbaumian]
x3/2o5x3/2o5*a5*c - 2sadtifady
x3/2o5o3/2x5*a5*c - (contains cid)
o3/2x5o3/2x5*a5*c -
x3/2x5x3/2o5*a5*c - [Grünbaumian]
x3/2x5o3/2x5*a5*c - [Grünbaumian]
x3/2x5x3/2x5*a5*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o5/4o3o5/4*a5*c (µ=1102) o3o5o3/2o5/4*a5/4*c (µ=1178) o3/2o5/4o3/2o5/4*a5/4*c (µ=3382)
quasiregulars
x3o5/4o3o5/4*a5*c - (contains "2doe")
o3x5/4o3o5/4*a5*c - (contains cid)
x3o5o3/2o5/4*a5/4*c - (contains "2doe")
o3x5o3/2o5/4*a5/4*c - (contains cid)
o3o5x3/2o5/4*a5/4*c - (contains "2doe")
o3o5o3/2x5/4*a5/4*c - (contains cid)
x3/2o5/4o3/2o5/4*a5/4*c - (contains "2doe")
o3/2x5/4o3/2o5/4*a5/4*c - (contains cid)
other
Wythoffians
x3x5/4o3o5/4*a5*c - (contains "2doe")
x3o5/4x3o5/4*a5*c - 2sadtifady
x3o5/4o3x5/4*a5*c - [Grünbaumian]
o3x5/4o3x5/4*a5*c -
x3x5/4x3o5/4*a5*c - [Grünbaumian]
x3x5/4o3x5/4*a5*c - [Grünbaumian]
x3x5/4x3x5/4*a5*c - [Grünbaumian]
x3x5o3/2o5/4*a5/4*c - (contains "2doe")
x3o5x3/2o5/4*a5/4*c - [Grünbaumian]
x3o5o3/2x5/4*a5/4*c - [Grünbaumian]
o3x5x3/2o5/4*a5/4*c - (contains cid)
o3x5o3/2x5/4*a5/4*c -
o3o5x3/2x5/4*a5/4*c - [Grünbaumian]
x3x5x3/2o5/4*a5/4*c - [Grünbaumian]
x3x5o3/2x5/4*a5/4*c - [Grünbaumian]
x3o5x3/2x5/4*a5/4*c - [Grünbaumian]
o3x5x3/2x5/4*a5/4*c - [Grünbaumian]
x3x5x3/2x5/4*a5/4*c - [Grünbaumian]
x3/2x5/4o3/2o5/4*a5/4*c - [Grünbaumian]
x3/2o5/4x3/2o5/4*a5/4*c - [Grünbaumian]
x3/2o5/4o3/2x5/4*a5/4*c - [Grünbaumian]
o3/2x5/4o3/2x5/4*a5/4*c -
x3/2x5/4x3/2o5/4*a5/4*c - [Grünbaumian]
x3/2x5/4o3/2x5/4*a5/4*c - [Grünbaumian]
x3/2x5/4x3/2x5/4*a5/4*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o5/2o3o5/2*a5/3*c   (up)

  o3o5/2o3o5/2*a5/3*c (µ=238) o3o5/3o3o5/3*a5/2*c (µ=598) o3o5/3o3/2o5/2*a5/2*c (µ=602)
quasiregulars
x3o5/2o3o5/2*a5/3*c - (contains "2gissid")
o3x5/2o3o5/2*a5/3*c - (contains gacid)
x3o5/3o3o5/3*a5/2*c - (contains "2gissid")
o3x5/3o3o5/3*a5/2*c - (contains gacid)
x3o5/3o3/2o5/2*a5/2*c - (contains "2gissid")
o3x5/3o3/2o5/2*a5/2*c - (contains gacid)
o3o5/3x3/2o5/2*a5/2*c - (contains "2gissid")
o3o5/3o3/2x5/2*a5/2*c - (contains gacid)
other
Wythoffians
x3x5/2o3o5/2*a5/3*c - (contains "2gissid")
x3o5/2x3o5/2*a5/3*c - 2gadtifady
x3o5/2o3x5/2*a5/3*c - [Grünbaumian]
o3x5/2o3x5/2*a5/3*c -
x3x5/2x3o5/2*a5/3*c - [Grünbaumian]
x3x5/2o3x5/2*a5/3*c - [Grünbaumian]
x3x5/2x3x5/2*a5/3*c - [Grünbaumian]
x3x5/3o3o5/3*a5/2*c - (contains "2gissid")
x3o5/3x3o5/3*a5/2*c - [Grünbaumian]
x3o5/3o3x5/3*a5/2*c - (contains gacid)
o3x5/3o3x5/3*a5/2*c -
x3x5/3x3o5/3*a5/2*c - [Grünbaumian]
x3x5/3o3x5/3*a5/2*c -
x3x5/3x3x5/3*a5/2*c - [Grünbaumian]
x3x5/3o3/2o5/2*a5/2*c - (contains "2gissid")
x3o5/3x3/2o5/2*a5/2*c - [Grünbaumian]
x3o5/3o3/2x5/2*a5/2*c - [Grünbaumian]
o3x5/3x3/2o5/2*a5/2*c - (contains gacid)
o3x5/3o3/2x5/2*a5/2*c -
o3o5/3x3/2x5/2*a5/2*c - [Grünbaumian]
x3x5/3x3/2o5/2*a5/2*c - [Grünbaumian]
x3x5/3o3/2x5/2*a5/2*c - [Grünbaumian]
x3o5/3x3/2x5/2*a5/2*c - [Grünbaumian]
o3x5/3x3/2x5/2*a5/2*c - [Grünbaumian]
x3x5/3x3/2x5/2*a5/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o5/2o3/2o5/3*a5/3*c (µ=962) o3/2o5/2o3/2o5/2*a5/2*c (µ=1078) o3/2o5/3o3/2o5/3*a5/3*c (µ=2158)
quasiregulars
x3o5/2o3/2o5/3*a5/3*c - (contains "2gissid")
o3x5/2o3/2o5/3*a5/3*c - (contains gacid)
o3o5/2x3/2o5/3*a5/3*c - (contains "2gissid")
o3o5/2o3/2x5/3*a5/3*c - (contains gacid)
x3/2o5/2o3/2o5/2*a5/2*c - (contains "2gissid")
o3/2x5/2o3/2o5/2*a5/2*c - (contains gacid)
x3/2o5/3o3/2o5/3*a5/3*c - (contains "2gissid")
o3/2x5/3o3/2o5/3*a5/3*c - (contains gacid)
other
Wythoffians
x3x5/2o3/2o5/3*a5/3*c - (contains "2gissid")
x3o5/2x3/2o5/3*a5/3*c - 2gadtifady
x3o5/2o3/2x5/3*a5/3*c - (contains gacid)
o3x5/2x3/2o5/3*a5/3*c - [Grünbaumian]
o3x5/2o3/2x5/3*a5/3*c -
o3o5/2x3/2x5/3*a5/3*c - [Grünbaumian]
x3x5/2x3/2o5/3*a5/3*c - [Grünbaumian]
x3x5/2o3/2x5/3*a5/3*c -
x3o5/2x3/2x5/3*a5/3*c - [Grünbaumian]
o3x5/2x3/2x5/3*a5/3*c - [Grünbaumian]
x3x5/2x3/2x5/3*a5/3*c - [Grünbaumian]
x3/2x5/2o3/2o5/2*a5/2*c - [Grünbaumian]
x3/2o5/2x3/2o5/2*a5/2*c - [Grünbaumian]
x3/2o5/2o3/2x5/2*a5/2*c - [Grünbaumian]
o3/2x5/2o3/2x5/2*a5/2*c -
x3/2x5/2x3/2o5/2*a5/2*c - [Grünbaumian]
x3/2x5/2o3/2x5/2*a5/2*c - [Grünbaumian]
x3/2x5/2x3/2x5/2*a5/2*c - [Grünbaumian]
x3/2x5/3o3/2o5/3*a5/3*c - [Grünbaumian]
x3/2o5/3x3/2o5/3*a5/3*c - 2gadtifady
x3/2o5/3o3/2x5/3*a5/3*c - (contains gacid)
o3/2x5/3o3/2x5/3*a5/3*c -
x3/2x5/3x3/2o5/3*a5/3*c - [Grünbaumian]
x3/2x5/3o3/2x5/3*a5/3*c - [Grünbaumian]
x3/2x5/3x3/2x5/3*a5/3*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o5/2o5o5*a5/4*c   (up)

  o3o5/2o5o5*a5/4*c (µ=38) o3o5/3o5/4o5*a5*c (µ=82) o3/2o5/2o5o5/4*a5*c (µ=322) o3o5/3o5o5/4*a5*c (µ=398)
quasiregulars
x3o5/2o5o5*a5/4*c - (contains "2gad")
o3x5/2o5o5*a5/4*c - (contains gacid)
o3o5/2x5o5*a5/4*c - (contains "2gad")
o3o5/2o5x5*a5/4*c - (contains "2gad")
x3o5/3o5/4o5*a5*c - (contains "2gad")
o3x5/3o5/4o5*a5*c - (contains gacid)
o3o5/3x5/4o5*a5*c - (contains "2gad")
o3o5/3o5/4x5*a5*c - (contains "2gad")
x3/2o5/2o5o5/4*a5*c - (contains "2gad")
o3/2x5/2o5o5/4*a5*c - (contains gacid)
o3/2o5/2x5o5/4*a5*c - (contains "2gad")
o3/2o5/2o5x5/4*a5*c - (contains "2gad")
x3o5/3o5o5/4*a5*c - (contains "2gad")
o3x5/3o5o5/4*a5*c - (contains gacid)
o3o5/3x5o5/4*a5*c - (contains "2gad")
o3o5/3o5x5/4*a5*c - (contains "2gad")
other
Wythoffians
x3x5/2o5o5*a5/4*c - (contains "2gad")
x3o5/2x5o5*a5/4*c - [Grünbaumian]
x3o5/2o5x5*a5/4*c - (contains gacid)
o3x5/2x5o5*a5/4*c - [Grünbaumian]
o3x5/2o5x5*a5/4*c -
o3o5/2x5x5*a5/4*c - (contains "2sidhid")
x3x5/2x5o5*a5/4*c - [Grünbaumian]
x3x5/2o5x5*a5/4*c -
x3o5/2x5x5*a5/4*c - [Grünbaumian]
o3x5/2x5x5*a5/4*c - [Grünbaumian]
x3x5/2x5x5*a5/4*c - [Grünbaumian]
x3x5/3o5/4o5*a5*c - (contains "2gad")
x3o5/3x5/4o5*a5*c - (contains "2sidhid")
x3o5/3o5/4x5*a5*c - (contains gacid)
o3x5/3x5/4o5*a5*c - (contains "2gad")
o3x5/3o5/4x5*a5*c -
o3o5/3x5/4x5*a5*c - [Grünbaumian]
x3x5/3x5/4o5*a5*c - (contains "2sidhid")
x3x5/3o5/4x5*a5*c -
x3o5/3x5/4x5*a5*c - [Grünbaumian]
o3x5/3x5/4x5*a5*c - [Grünbaumian]
x3x5/3x5/4x5*a5*c - [Grünbaumian]
x3/2x5/2o5o5/4*a5*c - [Grünbaumian]
x3/2o5/2x5o5/4*a5*c - (contains "2sidhid")
x3/2o5/2o5x5/4*a5*c - [Grünbaumian]
o3/2x5/2x5o5/4*a5*c - [Grünbaumian]
o3/2x5/2o5x5/4*a5*c -
o3/2o5/2x5x5/4*a5*c - (contains "2sidhid")
x3/2x5/2x5o5/4*a5*c - [Grünbaumian]
x3/2x5/2o5x5/4*a5*c - [Grünbaumian]
x3/2o5/2x5x5/4*a5*c - [Grünbaumian]
o3/2x5/2x5x5/4*a5*c - [Grünbaumian]
x3/2x5/2x5x5/4*a5*c - [Grünbaumian]
x3x5/3o5o5/4*a5*c - (contains "2gad")
x3o5/3x5o5/4*a5*c - (contains "2sidhid")
x3o5/3o5x5/4*a5*c - [Grünbaumian]
o3x5/3x5o5/4*a5*c - (contains "2gad")
o3x5/3o5x5/4*a5*c -
o3o5/3x5x5/4*a5*c - (contains "2sidhid")
x3x5/3x5o5/4*a5*c - (contains "2sidhid")
x3x5/3o5x5/4*a5*c - [Grünbaumian]
x3o5/3x5x5/4*a5*c - [Grünbaumian]
o3x5/3x5x5/4*a5*c -
x3x5/3x5x5/4*a5*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3/2o5/2o5/4o5*a5*c (µ=638) o3/2o5/3o5o5*a5/4*c (µ=682) o3o5/2o5/4o5/4*a5/4*c (µ=1882) o3/2o5/3o5/4o5/4*a5/4*c (µ=3158)
quasiregulars
x3/2o5/2o5/4o5*a5*c - (contains "2gad")
o3/2x5/2o5/4o5*a5*c - (contains gacid)
o3/2o5/2x5/4o5*a5*c - (contains "2gad")
o3/2o5/2o5/4x5*a5*c - (contains "2gad")
x3/2o5/3o5o5*a5/4*c - (contains "2gad")
o3/2x5/3o5o5*a5/4*c - (contains gacid)
o3/2o5/3x5o5*a5/4*c - (contains "2gad")
o3/2o5/3o5x5*a5/4*c - (contains "2gad")
x3o5/2o5/4o5/4*a5/4*c - (contains "2gad")
o3x5/2o5/4o5/4*a5/4*c - (contains gacid)
o3o5/2x5/4o5/4*a5/4*c - (contains "2gad")
o3o5/2o5/4x5/4*a5/4*c - (contains "2gad")
x3/2o5/3o5/4o5/4*a5/4*c - (contains "2gad")
o3/2x5/3o5/4o5/4*a5/4*c - (contains gacid)
o3/2o5/3x5/4o5/4*a5/4*c - (contains "2gad")
o3/2o5/3o5/4x5/4*a5/4*c - (contains "2gad")
other
Wythoffians
x3/2x5/2o5/4o5*a5*c - [Grünbaumian]
x3/2o5/2x5/4o5*a5*c - (contains "2sidhid")
x3/2o5/2o5/4x5*a5*c - (contains gacid)
o3/2x5/2x5/4o5*a5*c - [Grünbaumian]
o3/2x5/2o5/4x5*a5*c -
o3/2o5/2x5/4x5*a5*c - [Grünbaumian]
x3/2x5/2x5/4o5*a5*c - [Grünbaumian]
x3/2x5/2o5/4x5*a5*c - [Grünbaumian]
x3/2o5/2x5/4x5*a5*c - [Grünbaumian]
o3/2x5/2x5/4x5*a5*c - [Grünbaumian]
x3/2x5/2x5/4x5*a5*c - [Grünbaumian]
x3/2x5/3o5o5*a5/4*c - [Grünbaumian]
x3/2o5/3x5o5*a5/4*c - [Grünbaumian]
x3/2o5/3o5x5*a5/4*c - (contains gacid)
o3/2x5/3x5o5*a5/4*c - (contains "2gad")
o3/2x5/3o5x5*a5/4*c -
o3/2o5/3x5x5*a5/4*c - (contains "2sidhid")
x3/2x5/3x5o5*a5/4*c - [Grünbaumian]
x3/2x5/3o5x5*a5/4*c - [Grünbaumian]
x3/2o5/3x5x5*a5/4*c - [Grünbaumian]
o3/2x5/3x5x5*a5/4*c -
x3/2x5/3x5x5*a5/4*c - [Grünbaumian]
x3x5/2o5/4o5/4*a5/4*c - (contains "2gad")
x3o5/2x5/4o5/4*a5/4*c - [Grünbaumian]
x3o5/2o5/4x5/4*a5/4*c - [Grünbaumian]
o3x5/2x5/4o5/4*a5/4*c - [Grünbaumian]
o3x5/2o5/4x5/4*a5/4*c -
o3o5/2x5/4x5/4*a5/4*c - [Grünbaumian]
x3x5/2x5/4o5/4*a5/4*c - [Grünbaumian]
x3x5/2o5/4x5/4*a5/4*c - [Grünbaumian]
x3o5/2x5/4x5/4*a5/4*c - [Grünbaumian]
o3x5/2x5/4x5/4*a5/4*c - [Grünbaumian]
x3x5/2x5/4x5/4*a5/4*c - [Grünbaumian]
x3/2x5/3o5/4o5/4*a5/4*c - [Grünbaumian]
x3/2o5/3x5/4o5/4*a5/4*c - [Grünbaumian]
x3/2o5/3o5/4x5/4*a5/4*c - [Grünbaumian]
o3/2x5/3x5/4o5/4*a5/4*c - (contains "2gad")
o3/2x5/3o5/4x5/4*a5/4*c -
o3/2o5/3x5/4x5/4*a5/4*c - [Grünbaumian]
x3/2x5/3x5/4o5/4*a5/4*c - [Grünbaumian]
x3/2x5/3o5/4x5/4*a5/4*c - [Grünbaumian]
x3/2o5/3x5/4x5/4*a5/4*c - [Grünbaumian]
o3/2x5/3x5/4x5/4*a5/4*c - [Grünbaumian]
x3/2x5/3x5/4x5/4*a5/4*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3/2o5o5/2o5/2*a5/2*c   (up)

  o3/2o5o5/2o5/2*a5/2*c (µ=178) o3o5o5/2o5/3*a5/3*c (µ=182) o3o5o5/3o5/2*a5/3*c (µ=298) o3o5/4o5/2o5/2*a5/2*c (µ=542)
quasiregulars
x3/2o5o5/2o5/2*a5/2*c - (contains "2sissid")
o3/2x5o5/2o5/2*a5/2*c - (contains cid)
o3/2o5x5/2o5/2*a5/2*c - (contains "2sissid")
o3/2o5o5/2x5/2*a5/2*c - (contains "2sissid")
x3o5o5/2o5/3*a5/3*c - (contains "2sissid")
o3x5o5/2o5/3*a5/3*c - (contains cid)
o3o5x5/2o5/3*a5/3*c - (contains "2sissid")
o3o5o5/2x5/3*a5/3*c - (contains "2sissid")
x3o5o5/3o5/2*a5/3*c - (contains "2sissid")
o3x5o5/3o5/2*a5/3*c - (contains cid)
o3o5x5/3o5/2*a5/3*c - (contains "2sissid")
o3o5o5/3x5/2*a5/3*c - (contains "2sissid")
x3o5/4o5/2o5/2*a5/2*c - (contains "2sissid")
o3x5/4o5/2o5/2*a5/2*c - (contains cid)
o3o5/4x5/2o5/2*a5/2*c - (contains "2sissid")
o3o5/4o5/2x5/2*a5/2*c - (contains "2sissid")
other
Wythoffians
x3/2x5o5/2o5/2*a5/2*c - [Grünbaumian]
x3/2o5x5/2o5/2*a5/2*c - [Grünbaumian]
x3/2o5o5/2x5/2*a5/2*c - [Grünbaumian]
o3/2x5x5/2o5/2*a5/2*c - (contains "2sissid")
o3/2x5o5/2x5/2*a5/2*c -
o3/2o5x5/2x5/2*a5/2*c - [Grünbaumian]
x3/2x5x5/2o5/2*a5/2*c - [Grünbaumian]
x3/2x5o5/2x5/2*a5/2*c - [Grünbaumian]
x3/2o5x5/2x5/2*a5/2*c - [Grünbaumian]
o3/2x5x5/2x5/2*a5/2*c - [Grünbaumian]
x3/2x5x5/2x5/2*a5/2*c - [Grünbaumian]
x3x5o5/2o5/3*a5/3*c - (contains "2sissid")
x3o5x5/2o5/3*a5/3*c - (contains "2gidhid")
x3o5o5/2x5/3*a5/3*c - (contains "2gidhid")
o3x5x5/2o5/3*a5/3*c - (contains "2sissid")
o3x5o5/2x5/3*a5/3*c -
o3o5x5/2x5/3*a5/3*c - [Grünbaumian]
x3x5x5/2o5/3*a5/3*c - (contains "2gidhid")
x3x5o5/2x5/3*a5/3*c -
x3o5x5/2x5/3*a5/3*c - [Grünbaumian]
o3x5x5/2x5/3*a5/3*c - [Grünbaumian]
x3x5x5/2x5/3*a5/3*c - [Grünbaumian]
x3x5o5/3o5/2*a5/3*c - (contains "2sissid")
x3o5x5/3o5/2*a5/3*c - (contains "2gidhid")
x3o5o5/3x5/2*a5/3*c - [Grünbaumian]
o3x5x5/3o5/2*a5/3*c - (contains "2sissid")
o3x5o5/3x5/2*a5/3*c -
o3o5x5/3x5/2*a5/3*c - (contains "2gidhid")
x3x5x5/3o5/2*a5/3*c - (contains "2gidhid")
x3x5o5/3x5/2*a5/3*c - [Grünbaumian]
x3o5x5/3x5/2*a5/3*c - [Grünbaumian]
o3x5x5/3x5/2*a5/3*c -
x3x5x5/3x5/2*a5/3*c - [Grünbaumian]
x3x5/4o5/2o5/2*a5/2*c - (contains "2sissid")
x3o5/4x5/2o5/2*a5/2*c - [Grünbaumian]
x3o5/4o5/2x5/2*a5/2*c - [Grünbaumian]
o3x5/4x5/2o5/2*a5/2*c - [Grünbaumian]
o3x5/4o5/2x5/2*a5/2*c -
o3o5/4x5/2x5/2*a5/2*c - [Grünbaumian]
x3x5/4x5/2o5/2*a5/2*c - [Grünbaumian]
x3x5/4o5/2x5/2*a5/2*c - [Grünbaumian]
x3o5/4x5/2x5/2*a5/2*c - [Grünbaumian]
o3x5/4x5/2x5/2*a5/2*c - [Grünbaumian]
x3x5/4x5/2x5/2*a5/2*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...
  o3/2o5o5/3o5/3*a5/2*c (µ=782) o3o5/4o5/3o5/3*a5/2*c (µ=1378) o3/2o5/4o5/3o5/2*a5/3*c (µ=1862) o3/2o5/4o5/2o5/3*a5/3*c (µ=1978)
quasiregulars
x3/2o5o5/3o5/3*a5/2*c - (contains "2sissid")
o3/2x5o5/3o5/3*a5/2*c - (contains cid)
o3/2o5x5/3o5/3*a5/2*c - (contains "2sissid")
o3/2o5o5/3x5/3*a5/2*c - (contains "2sissid")
x3o5/4o5/3o5/3*a5/2*c - (contains "2sissid")
o3x5/4o5/3o5/3*a5/2*c - (contains cid)
o3o5/4x5/3o5/3*a5/2*c - (contains "2sissid")
o3o5/4o5/3x5/3*a5/2*c - (contains "2sissid")
x3/2o5/4o5/3o5/2*a5/3*c - (contains "2sissid")
o3/2x5/4o5/3o5/2*a5/3*c - (contains cid)
o3/2o5/4x5/3o5/2*a5/3*c - (contains "2sissid")
o3/2o5/4o5/3x5/2*a5/3*c - (contains "2sissid")
x3/2o5/4o5/2o5/3*a5/3*c - (contains "2sissid")
o3/2x5/4o5/2o5/3*a5/3*c - (contains cid)
o3/2o5/4x5/2o5/3*a5/3*c - (contains "2sissid")
o3/2o5/4o5/2x5/3*a5/3*c - (contains "2sissid")
other
Wythoffians
x3/2x5o5/3o5/3*a5/2*c - [Grünbaumian]
x3/2o5x5/3o5/3*a5/2*c - [Grünbaumian]
x3/2o5o5/3x5/3*a5/2*c - (contains "2gidhid")
o3/2x5x5/3o5/3*a5/2*c - (contains "2sissid")
o3/2x5o5/3x5/3*a5/2*c -
o3/2o5x5/3x5/3*a5/2*c - (contains "2gidhid")
x3/2x5x5/3o5/3*a5/2*c - [Grünbaumian]
x3/2x5o5/3x5/3*a5/2*c - [Grünbaumian]
x3/2o5x5/3x5/3*a5/2*c - [Grünbaumian]
o3/2x5x5/3x5/3*a5/2*c -
x3/2x5x5/3x5/3*a5/2*c - [Grünbaumian]
x3x5/4o5/3o5/3*a5/2*c - (contains "2sissid")
x3o5/4x5/3o5/3*a5/2*c - [Grünbaumian]
x3o5/4o5/3x5/3*a5/2*c - (contains "2gidhid")
o3x5/4x5/3o5/3*a5/2*c - [Grünbaumian]
o3x5/4o5/3x5/3*a5/2*c -
o3o5/4x5/3x5/3*a5/2*c - (contains "2gidhid")
x3x5/4x5/3o5/3*a5/2*c - [Grünbaumian]
x3x5/4o5/3x5/3*a5/2*c -
x3o5/4x5/3x5/3*a5/2*c - [Grünbaumian]
o3x5/4x5/3x5/3*a5/2*c - [Grünbaumian]
x3x5/4x5/3x5/3*a5/2*c - [Grünbaumian]
x3/2x5/4o5/3o5/2*a5/3*c - [Grünbaumian]
x3/2o5/4x5/3o5/2*a5/3*c - (contains "2gidhid")
x3/2o5/4o5/3x5/2*a5/3*c - [Grünbaumian]
o3/2x5/4x5/3o5/2*a5/3*c - [Grünbaumian]
o3/2x5/4o5/3x5/2*a5/3*c -
o3/2o5/4x5/3x5/2*a5/3*c - (contains "2gidhid")
x3/2x5/4x5/3o5/2*a5/3*c - [Grünbaumian]
x3/2x5/4o5/3x5/2*a5/3*c - [Grünbaumian]
x3/2o5/4x5/3x5/2*a5/3*c - [Grünbaumian]
o3/2x5/4x5/3x5/2*a5/3*c - [Grünbaumian]
x3/2x5/4x5/3x5/2*a5/3*c - [Grünbaumian]
x3/2x5/4o5/2o5/3*a5/3*c - [Grünbaumian]
x3/2o5/4x5/2o5/3*a5/3*c - (contains "2gidhid")
x3/2o5/4o5/2x5/3*a5/3*c - (contains "2gidhid")
o3/2x5/4x5/2o5/3*a5/3*c - [Grünbaumian]
o3/2x5/4o5/2x5/3*a5/3*c -
o3/2o5/4x5/2x5/3*a5/3*c - [Grünbaumian]
x3/2x5/4x5/2o5/3*a5/3*c - [Grünbaumian]
x3/2x5/4o5/2x5/3*a5/3*c - [Grünbaumian]
x3/2o5/4x5/2x5/3*a5/3*c - [Grünbaumian]
o3/2x5/4x5/2x5/3*a5/3*c - [Grünbaumian]
x3/2x5/4x5/2x5/3*a5/3*c - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
...


simplical ones
o-P-o-Q-o-R-o-S-*a-T-*c  *b-U-*d  =

        o
      / T \
     P _o_ S
   /_Q     R_\
  o-----U-----o

Pentachoral ("pentic") Symmetries   (up)

  o3o3o3o3*a3/2*c *b3/2*d (µ=4) o3o3o3/2o3/2*a3/2*c *b3*d (µ=6) o3/2o3/2o3/2o3/2*a3/2*c *b3/2*d (µ=24)
quasiregulars
x3o3o3o3*a3/2*c *b3/2*d - (contains "2tet")
x3o3o3/2o3/2*a3/2*c *b3*d - (contains "2tet")
o3x3o3/2o3/2*a3/2*c *b3*d - (contains "2tet")
x3/2o3/2o3/2o3/2*a3/2*c *b3/2*d - (contains "2tet")
other
Wythoffians
x3x3o3o3*a3/2*c *b3/2*d - (contains "2tet")
x3o3x3o3*a3/2*c *b3/2*d - [Grünbaumian]
x3x3x3o3*a3/2*c *b3/2*d - [Grünbaumian]
x3x3x3x3*a3/2*c *b3/2*d - [Grünbaumian]
x3x3o3/2o3/2*a3/2*c *b3*d - (contains "2tet")
x3o3x3/2o3/2*a3/2*c *b3*d - [Grünbaumian]
x3x3x3/2o3/2*a3/2*c *b3*d - [Grünbaumian]
o3x3x3/2x3/2*a3/2*c *b3*d - [Grünbaumian]
x3x3x3/2x3/2*a3/2*c *b3*d - [Grünbaumian]
x3/2x3/2o3/2o3/2*a3/2*c *b3/2*d - [Grünbaumian]
x3/2x3/2x3/2o3/2*a3/2*c *b3/2*d - [Grünbaumian]
x3/2x3/2x3/2x3/2*a3/2*c *b3/2*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Tesseractic ("tessic") Symmetries   (up)

  o3/2o3/2o4o4*a3/2*c *b4*d (µ=6) o3o3o4o4*a3/2*c *b4/3*d (µ=10)
quasiregulars
x3/2o3/2o4o4*a3/2*c *b4*d - (contains "2tet","oct+6{4}")
o3/2o3/2o4x4*a3/2*c *b4*d - 6tes
x3o3o4o4*a3/2*c *b4/3*d - (contains "2tet","oct+6{4}")
o3x3o4o4*a3/2*c *b4/3*d - (contains "2tet","oct+6{4}")
o3o3o4x4*a3/2*c *b4/3*d - 6tes
other
Wythoffians
x3/2x3/2o4o4*a3/2*c *b4*d - [Grünbaumian]
x3/2o3/2o4x4*a3/2*c *b4*d - 
x3/2x3/2x4o4*a3/2*c *b4*d - [Grünbaumian]
x3/2x3/2o4x4*a3/2*c *b4*d - [Grünbaumian]
x3/2x3/2x4x4*a3/2*c *b4*d - [Grünbaumian]
x3x3o4o4*a3/2*c *b4/3*d - 
x3o3x4o4*a3/2*c *b4/3*d - [Grünbaumian]
x3o3o4x4*a3/2*c *b4/3*d - 
o3x3o4x4*a3/2*c *b4/3*d - 
x3x3x4o4*a3/2*c *b4/3*d - [Grünbaumian]
x3x3o4x4*a3/2*c *b4/3*d - kavahto
x3o3x4x4*a3/2*c *b4/3*d - [Grünbaumian]
x3x3x4x4*a3/2*c *b4/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
  o3o3o4/3o4/3*a3/2*c *b4*d (µ=22) o3/2o3/2o4/3o4/3*a3/2*c *b4/3*d (µ=90)
quasiregulars
x3o3o4/3o4/3*a3/2*c *b4*d - (contains "2tet","oct+6{4}")
o3x3o4/3o4/3*a3/2*c *b4*d - (contains "2tet","oct+6{4}")
o3o3o4/3x4/3*a3/2*c *b4*d - 6tes
x3/2o3/2o4/3o4/3*a3/2*c *b4/3*d - (contains "2tet","oct+6{4}")
o3/2o3/2o4/3x4/3*a3/2*c *b4/3*d - 6tes
other
Wythoffians
x3x3o4/3o4/3*a3/2*c *b4*d - 
x3o3x4/3o4/3*a3/2*c *b4*d - [Grünbaumian]
x3o3o4/3x4/3*a3/2*c *b4*d - 
o3x3o4/3x4/3*a3/2*c *b4*d - 
x3x3x4/3o4/3*a3/2*c *b4*d - [Grünbaumian]
x3x3o4/3x4/3*a3/2*c *b4*d - kavahto
x3o3x4/3x4/3*a3/2*c *b4*d - [Grünbaumian]
x3x3x4/3x4/3*a3/2*c *b4*d - [Grünbaumian]
x3/2x3/2o4/3o4/3*a3/2*c *b4/3*d - [Grünbaumian]
x3/2o3/2o4/3x4/3*a3/2*c *b4/3*d - 
x3/2x3/2x4/3o4/3*a3/2*c *b4/3*d - [Grünbaumian]
x3/2x3/2o4/3x4/3*a3/2*c *b4/3*d - [Grünbaumian]
x3/2x3/2x4/3x4/3*a3/2*c *b4/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...


Icositetrachoral ("icoic") Symmetries   (up)

  o4o4o4o4*a3/2*c *b3/2*d (µ=4) o3o4o3/2o4/3*a4/3*c *b4*d (µ=44)
quasiregulars
x4o4o4o4*a3/2*c *b3/2*d - 2ico+2gico
x3o4o3/2o4/3*a4/3*c *b4*d - 2ico+2gico
o3x4o3/2o4/3*a4/3*c *b4*d - 2ico+2gico
o3o4x3/2o4/3*a4/3*c *b4*d - 2ico+2gico
other
Wythoffians
x4x4o4o4*a3/2*c *b3/2*d - 
x4o4x4o4*a3/2*c *b3/2*d - [Grünbaumian]
x4x4x4o4*a3/2*c *b3/2*d - [Grünbaumian]
x4x4x4x4*a3/2*c *b3/2*d - [Grünbaumian]
x3x4o3/2o4/3*a4/3*c *b4*d - 
x3o4x3/2o4/3*a4/3*c *b4*d - 
o3x4x3/2o4/3*a4/3*c *b4*d - 
o3o4x3/2x4/3*a4/3*c *b4*d - [Grünbaumian]
x3x4x3/2o4/3*a4/3*c *b4*d - 
x3o4x3/2x4/3*a4/3*c *b4*d - [Grünbaumian]
o3x4x3/2x4/3*a4/3*c *b4*d - [Grünbaumian]
x3x4x3/2x4/3*a4/3*c *b4*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
  o3o4o3o4*a4/3*c *c4/3*d (µ=52) o3/2o4/3o3/2o4/3*a4/3*c *b4/3*d (µ=292)
quasiregulars
x3o4o3o4*a4/3*c *b4/3*d - 2ico+2gico
x3/2o4/3o3/2o4/3*a4/3*c *b4/3*d - 2ico+2gico
other
Wythoffians
x3x4o3o4*a4/3*c *b4/3*d - 
x3o4x3o4*a4/3*c *b4/3*d - 
x3o4o3x4*a4/3*c *b4/3*d - 
x3x4x3o4*a4/3*c *b4/3*d - 
x3x4x3x4*a4/3*c *b4/3*d - 2affic
x3/2x4/3o3/2o4/3*a4/3*c *b4/3*d - [Grünbaumian]
x3/2o4/3x3/2o4/3*a4/3*c *b4/3*d - 
x3/2x4/3x3/2o4/3*a4/3*c *b4/3*d - [Grünbaumian]
x3/2x4/3x3/2x4/3*a4/3*c *b4/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3/2o3o3/2*a3*c *b5*d   (up)

  o3o3/2o3o3/2*a3*c *b5*d (µ=284) o3o3o3/2o3/2*a3/2*c *b5*d (µ=436) o3o3o3o3*a3/2*c *b5/4*d (µ=764)
quasiregulars
x3o3/2o3o3/2*a3*c *b5*d - (contains "2tet")
o3x3/2o3o3/2*a3*c *b5*d - (contains "2tet")
x3o3o3/2o3/2*a3/2*c *b5*d - (contains "2tet")
o3x3o3/2o3/2*a3/2*c *b5*d - (contains "2tet")
o3o3o3/2x3/2*a3/2*c *b5*d - (contains "2tet")
x3o3o3o3*a3/2*c *b5/4*d - (contains "2tet")
o3x3o3o3*a3/2*c *b5/4*d - (contains "2tet")
other
Wythoffians
x3x3/2o3o3/2*a3*c *b5*d - 
x3o3/2x3o3/2*a3*c *b5*d - 
x3o3/2o3x3/2*a3*c *b5*d - [Grünbaumian]
o3x3/2o3x3/2*a3*c *b5*d - 
x3x3/2x3o3/2*a3*c *b5*d - [Grünbaumian]
x3x3/2o3x3/2*a3*c *b5*d - [Grünbaumian]
x3x3/2x3x3/2*a3*c *b5*d - [Grünbaumian]
x3x3o3/2o3/2*a3/2*c *b5*d - 
x3o3x3/2o3/2*a3/2*c *b5*d - [Grünbaumian]
x3o3o3/2x3/2*a3/2*c *b5*d - [Grünbaumian]
o3x3o3/2x3/2*a3/2*c *b5*d - 
x3x3x3/2o3/2*a3/2*c *b5*d - [Grünbaumian]
x3x3o3/2x3/2*a3/2*c *b5*d - [Grünbaumian]
x3o3x3/2x3/2*a3/2*c *b5*d - [Grünbaumian]
x3x3x3/2x3/2*a3/2*c *b5*d - [Grünbaumian]
x3x3o3o3*a3/2*c *b5/4*d - 
x3o3x3o3*a3/2*c *b5/4*d - [Grünbaumian]
o3x3o3x3*a3/2*c *b5/4*d - [Grünbaumian]
x3x3x3o3*a3/2*c *b5/4*d - [Grünbaumian]
x3x3o3x3*a3/2*c *b5/4*d - [Grünbaumian]
x3x3x3x3*a3/2*c *b5/4*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o3/2o3/2o3*a3*c *b5/4*d (µ=916) o3/2o3/2o3/2o3/2*a3/2*c *b5/4*d (µ=3164)  
quasiregulars
x3o3/2o3/2o3*a3*c *b5/4*d - (contains "2tet")
o3x3/2o3/2o3*a3*c *b5/4*d - (contains "2tet")
o3o3/2x3/2o3*a3*c *b5/4*d - (contains "2tet")
x3/2o3/2o3/2o3/2*a3/2*c *b5/4*d - (contains "2tet")
o3/2x3/2o3/2o3/2*a3/2*c *b5/4*d - (contains "2tet")
 
other
Wythoffians
x3x3/2o3/2o3*a3*c *b5/4*d - 
x3o3/2x3/2o3*a3*c *b5/4*d - 
o3x3/2x3/2o3*a3*c *b5/4*d - [Grünbaumian]
o3x3/2o3/2x3*a3*c *b5/4*d - [Grünbaumian]
x3x3/2x3/2o3*a3*c *b5/4*d - [Grünbaumian]
x3x3/2o3/2x3*a3*c *b5/4*d - [Grünbaumian]
o3x3/2x3/2x3*a3*c *b5/4*d - [Grünbaumian]
x3x3/2x3/2x3*a3*c *b5/4*d - [Grünbaumian]
x3/2x3/2o3/2o3/2*a3/2*c *b5/4*d - [Grünbaumian]
x3/2o3/2x3/2o3/2*a3/2*c *b5/4*d - [Grünbaumian]
o3/2x3/2o3/2x3/2*a3/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2x3/2o3/2*a3/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2o3/2x3/2*a3/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2x3/2x3/2*a3/2*c *b5/4*d - [Grünbaumian]
 
(partial)
snubs and
holosnubs
...
...
 


Hecatonicosachoral ("hyic") Symmetries – type o3o3o3o3*a3/2*c *b5/2*d   (up)

  o3o3o3o3*a3/2*c *b5/2*d (µ=4) o3o3/2o3/2o3*a3*c *b5/2*d (µ=236) o3o3/2o3o3/2*a3*c *b5/3*d (µ=964)
quasiregulars
x3o3o3o3*a3/2*c *b5/2*d - (contains "2tet")
o3x3o3o3*a3/2*c *b5/2*d - (contains "2tet")
x3o3/2o3/2o3*a3*c *b5/2*d - (contains "2tet")
o3x3/2o3/2o3*a3*c *b5/2*d - (contains "2tet")
o3o3/2x3/2o3*a3*c *b5/2*d - (contains "2tet")
x3o3/2o3o3/2*a3*c *b5/3*d - (contains "2tet")
o3x3/2o3o3/2*a3*c *b5/3*d - (contains "2tet")
other
Wythoffians
x3x3o3o3*a3/2*c *b5/2*d - 
x3o3x3o3*a3/2*c *b5/2*d - [Grünbaumian]
o3x3o3x3*a3/2*c *b5/2*d - [Grünbaumian]
x3x3x3o3*a3/2*c *b5/2*d - [Grünbaumian]
x3x3o3x3*a3/2*c *b5/2*d - [Grünbaumian]
x3x3x3x3*a3/2*c *b5/2*d - [Grünbaumian]
x3x3/2o3/2o3*a3*c *b5/2*d - 
x3o3/2x3/2o3*a3*c *b5/2*d - 
o3x3/2x3/2o3*a3*c *b5/2*d - [Grünbaumian]
o3x3/2o3/2x3*a3*c *b5/2*d - [Grünbaumian]
x3x3/2x3/2o3*a3*c *b5/2*d - [Grünbaumian]
x3x3/2o3/2x3*a3*c *b5/2*d - [Grünbaumian]
o3x3/2x3/2x3*a3*c *b5/2*d - [Grünbaumian]
x3x3/2x3/2x3*a3*c *b5/2*d - [Grünbaumian]
x3x3/2o3o3/2*a3*c *b5/3*d - 
x3o3/2x3o3/2*a3*c *b5/3*d - 
x3o3/2o3x3/2*a3*c *b5/3*d - [Grünbaumian]
o3x3/2o3x3/2*a3*c *b5/3*d - 
x3x3/2x3o3/2*a3*c *b5/3*d - [Grünbaumian]
x3x3/2o3x3/2*a3*c *b5/3*d - [Grünbaumian]
x3x3/2x3x3/2*a3*c *b5/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o3o3/2o3/2*a3/2*c *b5/3*d (µ=1196) o3/2o3/2o3/2o3/2*a3/2*c *b5/2*d (µ=2404)  
quasiregulars
x3o3o3/2o3/2*a3/2*c *b5/3*d - (contains "2tet")
o3x3o3/2o3/2*a3/2*c *b5/3*d - (contains "2tet")
o3o3o3/2x3/2*a3/2*c *b5/3*d - (contains "2tet")
x3/2o3/2o3/2o3/2*a3/2*c *b5/2*d - (contains "2tet")
o3/2x3/2o3/2o3/2*a3/2*c *b5/2*d - (contains "2tet")
 
other
Wythoffians
x3x3o3/2o3/2*a3/2*c *b5/3*d - 
x3o3x3/2o3/2*a3/2*c *b5/3*d - [Grünbaumian]
x3o3o3/2x3/2*a3/2*c *b5/3*d - [Grünbaumian]
o3x3o3/2x3/2*a3/2*c *b5/3*d - 
x3x3x3/2o3/2*a3/2*c *b5/3*d - [Grünbaumian]
x3x3o3/2x3/2*a3/2*c *b5/3*d - [Grünbaumian]
x3o3x3/2x3/2*a3/2*c *b5/3*d - [Grünbaumian]
x3x3x3/2x3/2*a3/2*c *b5/3*d - [Grünbaumian]
x3/2x3/2o3/2o3/2*a3/2*c *b5/2*d - [Grünbaumian]
x3/2o3/2x3/2o3/2*a3/2*c *b5/2*d - [Grünbaumian]
o3/2x3/2o3/2x3/2*a3/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2x3/2o3/2*a3/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2o3/2x3/2*a3/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2x3/2x3/2*a3/2*c *b5/2*d - [Grünbaumian]
 
(partial)
snubs and
holosnubs
...
...
 


Hecatonicosachoral ("hyic") Symmetries – type o3/2o3o3/2o5*a5*c *b3*d   (up)

  o3/2o3o3/2o5*a5*c *b3*d (µ=78) o3o3/2o3/2o5*a5*c *b3/2*d (µ=162) o3o3o3o5*a5/4*c *b3/2*d (µ=558)
quasiregulars
x3/2o3o3/2o5*a5*c *b3*d - (contains "2doe")
o3/2x3o3/2o5*a5*c *b3*d - (contains "2tet")
o3/2o3x3/2o5*a5*c *b3*d - (contains "2tet")
x3o3/2o3/2o5*a5*c *b3/2*d - (contains "2doe")
o3x3/2o3/2o5*a5*c *b3/2*d - (contains "2tet")
o3o3/2x3/2o5*a5*c *b3/2*d - (contains "2tet")
x3o3o3o5*a5/4*c *b3/2*d - (contains "2doe")
o3x3o3o5*a5/4*c *b3/2*d - (contains "2tet")
o3o3x3o5*a5/4*c *b3/2*d - (contains "2tet")
o3o3o3x5*a5/4*c *b3/2*d - (contains "2tet")
other
Wythoffians
x3/2x3o3/2o5*a5*c *b3*d - [Grünbaumian]
x3/2o3x3/2o5*a5*c *b3*d - 
o3/2x3x3/2o5*a5*c *b3*d - 
o3/2o3x3/2x5*a5*c *b3*d - [Grünbaumian]
x3/2x3x3/2o5*a5*c *b3*d - [Grünbaumian]
x3/2o3x3/2x5*a5*c *b3*d - [Grünbaumian]
o3/2x3x3/2x5*a5*c *b3*d - [Grünbaumian]
x3/2x3x3/2x5*a5*c *b3*d - [Grünbaumian]
x3x3/2o3/2o5*a5*c *b3/2*d - 
x3o3/2x3/2o5*a5*c *b3/2*d - 
o3x3/2x3/2o5*a5*c *b3/2*d - [Grünbaumian]
o3o3/2x3/2x5*a5*c *b3/2*d - [Grünbaumian]
x3x3/2x3/2o5*a5*c *b3/2*d - [Grünbaumian]
x3o3/2x3/2x5*a5*c *b3/2*d - [Grünbaumian]
o3x3/2x3/2x5*a5*c *b3/2*d - [Grünbaumian]
x3x3/2x3/2x5*a5*c *b3/2*d - [Grünbaumian]
x3x3o3o5*a5/4*c *b3/2*d - 
x3o3x3o5*a5/4*c *b3/2*d - [Grünbaumian]
x3o3o3x5*a5/4*c *b3/2*d - 
o3x3x3o5*a5/4*c *b3/2*d - 
o3x3o3x5*a5/4*c *b3/2*d - [Grünbaumian]
o3o3x3x5*a5/4*c *b3/2*d - 
x3x3x3o5*a5/4*c *b3/2*d - [Grünbaumian]
x3x3o3x5*a5/4*c *b3/2*d - [Grünbaumian]
x3o3x3x5*a5/4*c *b3/2*d - [Grünbaumian]
o3x3x3x5*a5/4*c *b3/2*d - [Grünbaumian]
x3x3x3x5*a5/4*c *b3/2*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3/2o3/2o3o5*a5/4*c *b3*d (µ=642) o3o3o3/2o5/4*a5/4*c *b3*d (µ=1122) o3/2o3/2o3/2o5/4*a5/4*c *b3/2*d (µ=3438)
quasiregulars
x3/2o3/2o3o5*a5/4*c *b3*d - (contains "2doe")
o3/2x3/2o3o5*a5/4*c *b3*d - (contains "2tet")
o3/2o3/2x3o5*a5/4*c *b3*d - (contains "2tet")
o3/2o3/2o3x5*a5/4*c *b3*d - (contains "2tet")
x3o3o3/2o5/4*a5/4*c *b3*d - (contains "2doe")
o3x3o3/2o5/4*a5/4*c *b3*d - (contains "2tet")
o3o3x3/2o5/4*a5/4*c *b3*d - (contains "2tet")
x3/2o3/2o3/2o5/4*a5/4*c *b3/2*d - (contains "2doe")
o3/2x3/2o3/2o5/4*a5/4*c *b3/2*d - (contains "2tet")
o3/2o3/2x3/2o5/4*a5/4*c *b3/2*d - (contains "2tet")
other
Wythoffians
x3/2x3/2o3o5*a5/4*c *b3*d - [Grünbaumian]
x3/2o3/2x3o5*a5/4*c *b3*d - [Grünbaumian]
x3/2o3/2o3x5*a5/4*c *b3*d - 
o3/2x3/2x3o5*a5/4*c *b3*d - [Grünbaumian]
o3/2x3/2o3x5*a5/4*c *b3*d - 
o3/2o3/2x3x5*a5/4*c *b3*d - 
x3/2x3/2x3o5*a5/4*c *b3*d - [Grünbaumian]
x3/2x3/2o3x5*a5/4*c *b3*d - [Grünbaumian]
x3/2o3/2x3x5*a5/4*c *b3*d - [Grünbaumian]
o3/2x3/2x3x5*a5/4*c *b3*d - [Grünbaumian]
x3/2x3/2x3x5*a5/4*c *b3*d - [Grünbaumian]
x3x3o3/2o5/4*a5/4*c *b3*d - 
x3o3x3/2o5/4*a5/4*c *b3*d - [Grünbaumian]
o3x3x3/2o5/4*a5/4*c *b3*d - 
o3o3x3/2x5/4*a5/4*c *b3*d - [Grünbaumian]
x3x3x3/2o5/4*a5/4*c *b3*d - [Grünbaumian]
x3o3x3/2x5/4*a5/4*c *b3*d - [Grünbaumian]
x3x3x3/2x5/4*a5/4*c *b3*d - [Grünbaumian]
x3/2x3/2o3/2o5/4*a5/4*c *b3/2*d - [Grünbaumian]
x3/2o3/2x3/2o5/4*a5/4*c *b3/2*d - [Grünbaumian]
o3/2x3/2x3/2o5/4*a5/4*c *b3/2*d - [Grünbaumian]
o3/2o3/2x3/2x5/4*a5/4*c *b3/2*d - [Grünbaumian]
x3/2x3/2x3/2o5/4*a5/4*c *b3/2*d - [Grünbaumian]
x3/2o3/2x3/2x5/4*a5/4*c *b3/2*d - [Grünbaumian]
o3/2x3/2x3/2x5/4*a5/4*c *b3/2*d - [Grünbaumian]
x3/2x3/2x3/2x5/4*a5/4*c *b3/2*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3o3/2o5/2*a5/2*c *b3*d   (up)

  o3o3o3/2o5/2*a5/2*c *b3*d (µ=18) o3o3o3o5/3*a5/2*c *b3/2*d (µ=222) o3/2o3o3o5/2*a5/3*c *b3/2*d (µ=978)
quasiregulars
x3o3o3/2o5/2*a5/2*c *b3*d - (contains "2gissid")
o3x3o3/2o5/2*a5/2*c *b3*d - (contains "2tet")
o3o3x3/2o5/2*a5/2*c *b3*d - (contains "2tet")
x3o3o3o5/3*a5/2*c *b3/2*d - (contains "2gissid")
o3x3o3o5/3*a5/2*c *b3/2*d - (contains "2tet")
o3o3x3o5/3*a5/2*c *b3/2*d - (contains "2tet")
o3o3o3x5/3*a5/2*c *b3/2*d - (contains "2tet")
x3/2o3o3o5/2*a5/3*c *b3/2*d - (contains "2gissid")
o3/2x3o3o5/2*a5/3*c *b3/2*d - (contains "2tet")
o3/2o3x3o5/2*a5/3*c *b3/2*d - (contains "2tet")
o3/2o3o3x5/2*a5/3*c *b3/2*d - (contains "2tet")
other
Wythoffians
x3x3o3/2o5/2*a5/2*c *b3*d - 
x3o3x3/2o5/2*a5/2*c *b3*d - [Grünbaumian]
o3x3x3/2o5/2*a5/2*c *b3*d - 
o3o3x3/2x5/2*a5/2*c *b3*d - [Grünbaumian]
x3x3x3/2o5/2*a5/2*c *b3*d - [Grünbaumian]
x3o3x3/2x5/2*a5/2*c *b3*d - [Grünbaumian]
o3x3x3/2x5/2*a5/2*c *b3*d - [Grünbaumian]
x3x3x3/2x5/2*a5/2*c *b3*d - [Grünbaumian]
x3x3o3o5/3*a5/2*c *b3/2*d - 
x3o3x3o5/3*a5/2*c *b3/2*d - [Grünbaumian]
x3o3o3x5/3*a5/2*c *b3/2*d - 
o3x3x3o5/3*a5/2*c *b3/2*d - 
o3x3o3x5/3*a5/2*c *b3/2*d - [Grünbaumian]
o3o3x3x5/3*a5/2*c *b3/2*d - 
x3x3x3o5/3*a5/2*c *b3/2*d - [Grünbaumian]
x3x3o3x5/3*a5/2*c *b3/2*d - [Grünbaumian]
x3o3x3x5/3*a5/2*c *b3/2*d - [Grünbaumian]
o3x3x3x5/3*a5/2*c *b3/2*d - [Grünbaumian]
x3x3x3x5/3*a5/2*c *b3/2*d - [Grünbaumian]
x3/2x3o3o5/2*a5/3*c *b3/2*d - [Grünbaumian]
x3/2o3x3o5/2*a5/3*c *b3/2*d - 
x3/2o3o3x5/2*a5/3*c *b3/2*d - [Grünbaumian]
o3/2x3x3o5/2*a5/3*c *b3/2*d - 
o3/2x3o3x5/2*a5/3*c *b3/2*d - [Grünbaumian]
o3/2o3x3x5/2*a5/3*c *b3/2*d - 
x3/2x3x3o5/2*a5/3*c *b3/2*d - [Grünbaumian]
x3/2x3o3x5/2*a5/3*c *b3/2*d - [Grünbaumian]
x3/2o3x3x5/2*a5/3*c *b3/2*d - [Grünbaumian]
o3/2x3x3x5/2*a5/3*c *b3/2*d - [Grünbaumian]
x3/2x3x3x5/2*a5/3*c *b3/2*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3/2o3o3/2o5/3*a5/3*c *b3*d (µ=1182) o3/2o3/2o3/2o5/2*a5/2*c *b3/2*d (µ=1662) o3o3/2o3/2o5/3*a5/3*c *b3/2*d (µ=1938)
quasiregulars
x3/2o3o3/2o5/3*a5/3*c *b3*d - (contains "2gissid")
o3/2x3o3/2o5/3*a5/3*c *b3*d - (contains "2tet")
o3/2o3x3/2o5/3*a5/3*c *b3*d - (contains "2tet")
x3/2o3/2o3/2o5/2*a5/2*c *b3/2*d - (contains "2gissid")
o3/2x3/2o3/2o5/2*a5/2*c *b3/2*d - (contains "2tet")
o3/2o3/2x3/2o5/2*a5/2*c *b3/2*d - (contains "2tet")
x3o3/2o3/2o5/3*a5/3*c *b3/2*d - (contains "2gissid")
o3x3/2o3/2o5/3*a5/3*c *b3/2*d - (contains "2tet")
o3o3/2x3/2o5/3*a5/3*c *b3/2*d - (contains "2tet")
other
Wythoffians
x3/2x3o3/2o5/3*a5/3*c *b3*d - [Grünbaumian]
x3/2o3x3/2o5/3*a5/3*c *b3*d - 
o3/2x3x3/2o5/3*a5/3*c *b3*d - 
o3/2o3x3/2x5/3*a5/3*c *b3*d - [Grünbaumian]
x3/2x3x3/2o5/3*a5/3*c *b3*d - [Grünbaumian]
x3/2o3x3/2x5/3*a5/3*c *b3*d - [Grünbaumian]
o3/2x3x3/2x5/3*a5/3*c *b3*d - [Grünbaumian]
x3/2x3x3/2x5/3*a5/3*c *b3*d - [Grünbaumian]
x3/2x3/2o3/2o5/2*a5/2*c *b3/2*d - [Grünbaumian]
x3/2o3/2x3/2o5/2*a5/2*c *b3/2*d - [Grünbaumian]
o3/2x3/2x3/2o5/2*a5/2*c *b3/2*d - [Grünbaumian]
o3/2o3/2x3/2x5/2*a5/2*c *b3/2*d - [Grünbaumian]
x3/2x3/2x3/2o5/2*a5/2*c *b3/2*d - [Grünbaumian]
x3/2o3/2x3/2x5/2*a5/2*c *b3/2*d - [Grünbaumian]
o3/2x3/2x3/2x5/2*a5/2*c *b3/2*d - [Grünbaumian]
x3/2x3/2x3/2x5/2*a5/2*c *b3/2*d - [Grünbaumian]
x3x3/2o3/2o5/3*a5/3*c *b3/2*d - 
x3o3/2x3/2o5/3*a5/3*c *b3/2*d - 
o3x3/2x3/2o5/3*a5/3*c *b3/2*d - [Grünbaumian]
o3o3/2x3/2x5/3*a5/3*c *b3/2*d - [Grünbaumian]
x3x3/2x3/2o5/3*a5/3*c *b3/2*d - [Grünbaumian]
x3o3/2x3/2x5/3*a5/3*c *b3/2*d - [Grünbaumian]
o3x3/2x3/2x5/3*a5/3*c *b3/2*d - [Grünbaumian]
x3x3/2x3/2x5/3*a5/3*c *b3/2*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3o3o3*a5/2*c *b5/4*d   (up)

  o3o3o3o3*a5/2*c *b5/4*d (µ=80) o3o3o3/2o3/2*a5/2*c *b5*d (µ=160) o3o3/2o3o3/2*a5/3*c *b5*d (µ=560)
quasiregulars
x3o3o3o3*a5/2*c *b5/4*d - (contains "2gike")
o3x3o3o3*a5/2*c *b5/4*d - (contains "2ike")
x3o3o3/2o3/2*a5/2*c *b5*d - (contains "2gike")
o3x3o3/2o3/2*a5/2*c *b5*d - (contains "2ike")
o3o3o3/2x3/2*a5/2*c *b5*d - (contains "2ike")
x3o3/2o3o3/2*a5/3*c *b5*d - (contains "2gike")
o3x3/2o3o3/2*a5/3*c *b5*d - (contains "2ike")
other
Wythoffians
x3x3o3o3*a5/2*c *b5/4*d - 
x3o3x3o3*a5/2*c *b5/4*d - [Grünbaumian]
o3x3o3x3*a5/2*c *b5/4*d - [Grünbaumian]
x3x3x3o3*a5/2*c *b5/4*d - [Grünbaumian]
x3x3o3x3*a5/2*c *b5/4*d - [Grünbaumian]
x3x3x3x3*a5/2*c *b5/4*d - [Grünbaumian]
x3x3o3/2o3/2*a5/2*c *b5*d - 
x3o3x3/2o3/2*a5/2*c *b5*d - [Grünbaumian]
x3o3o3/2x3/2*a5/2*c *b5*d - [Grünbaumian]
o3x3o3/2x3/2*a5/2*c *b5*d - 
x3x3x3/2o3/2*a5/2*c *b5*d - [Grünbaumian]
x3x3o3/2x3/2*a5/2*c *b5*d - [Grünbaumian]
x3o3x3/2x3/2*a5/2*c *b5*d - [Grünbaumian]
x3x3x3/2x3/2*a5/2*c *b5*d - [Grünbaumian]
x3x3/2o3o3/2*a5/3*c *b5*d - 
x3o3/2x3o3/2*a5/3*c *b5*d - 
x3o3/2o3x3/2*a5/3*c *b5*d - [Grünbaumian]
o3x3/2o3x3/2*a5/3*c *b5*d - 
x3x3/2x3o3/2*a5/3*c *b5*d - [Grünbaumian]
x3x3/2o3x3/2*a5/3*c *b5*d - [Grünbaumian]
x3x3/2x3x3/2*a5/3*c *b5*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o3/2o3/2o3*a5/3*c *b5/4*d (µ=1600) o3/2o3/2o3/2o3/2*a5/2*c *b5/4*d (µ=2480)  
quasiregulars
x3o3/2o3/2o3*a5/3*c *b5/4*d - (contains "2gike")
o3x3/2o3/2o3*a5/3*c *b5/4*d - (contains "2ike")
o3o3/2x3/2o3*a5/3*c *b5/4*d - (contains "2gike")
x3/2o3/2o3/2o3/2*a5/2*c *b5/4*d - (contains "2gike")
o3/2x3/2o3/2o3/2*a5/2*c *b5/4*d - (contains "2ike")
 
other
Wythoffians
x3x3/2o3/2o3*a5/3*c *b5/4*d - 
x3o3/2x3/2o3*a5/3*c *b5/4*d - 
o3x3/2x3/2o3*a5/3*c *b5/4*d - [Grünbaumian]
o3x3/2o3/2x3*a5/3*c *b5/4*d - [Grünbaumian]
x3x3/2x3/2o3*a5/3*c *b5/4*d - [Grünbaumian]
x3x3/2o3/2x3*a5/3*c *b5/4*d - [Grünbaumian]
o3x3/2x3/2x3*a5/3*c *b5/4*d - [Grünbaumian]
x3x3/2x3/2x3*a5/3*c *b5/4*d - [Grünbaumian]
x3/2x3/2o3/2o3/2*a5/2*c *b5/4*d - [Grünbaumian]
x3/2o3/2x3/2o3/2*a5/2*c *b5/4*d - [Grünbaumian]
o3/2x3/2o3/2x3/2*a5/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2x3/2o3/2*a5/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2o3/2x3/2*a5/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2x3/2x3/2*a5/2*c *b5/4*d - [Grünbaumian]
 
(partial)
snubs and
holosnubs
...
...
 


Hecatonicosachoral ("hyic") Symmetries – type o3/2o3/2o5o5*a3/2*c *b5*d   (up)

  o3/2o3/2o5o5*a3/2*c *b5*d (µ=6) o3o3o5o5*a3/2*c *b5/4*d (µ=234)
quasiregulars
x3/2o3/2o5o5*a3/2*c *b5*d - (contains "2tet")
o3/2o3/2o5x5*a3/2*c *b5*d - (contains "2doe")
x3o3o5o5*a3/2*c *b5/4*d - (contains "2tet")
o3x3o5o5*a3/2*c *b5/4*d - (contains "2tet")
o3o3o5x5*a3/2*c *b5/4*d - (contains "2doe")
other
Wythoffians
x3/2x3/2o5o5*a3/2*c *b5*d - [Grünbaumian]
x3/2o3/2o5x5*a3/2*c *b5*d - 
x3/2x3/2x5o5*a3/2*c *b5*d - [Grünbaumian]
x3/2x3/2o5x5*a3/2*c *b5*d - [Grünbaumian]
x3/2x3/2x5x5*a3/2*c *b5*d - [Grünbaumian]
x3x3o5o5*a3/2*c *b5/4*d - 
x3o3x5o5*a3/2*c *b5/4*d - [Grünbaumian]
x3o3o5x5*a3/2*c *b5/4*d - 
o3x3o5x5*a3/2*c *b5/4*d - [Grünbaumian]
x3x3x5o5*a3/2*c *b5/4*d - [Grünbaumian]
x3x3o5x5*a3/2*c *b5/4*d - [Grünbaumian]
x3o3x5x5*a3/2*c *b5/4*d - [Grünbaumian]
x3x3x5x5*a3/2*c *b5/4*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
  o3o3o5/4o5/4*a3/2*c *b5*d (µ=966) o3/2o3/2o5/4o5/4*a3/2*c *b5/4*d (µ=3594)
quasiregulars
x3o3o5/4o5/4*a3/2*c *b5*d - (contains "2tet")
o3x3o5/4o5/4*a3/2*c *b5*d - (contains "2tet")
o3o3o5/4x5/4*a3/2*c *b5*d - (contains "2doe")
x3/2o3/2o5/4o5/4*a3/2*c *b5/4*d - (contains "2tet")
o3/2o3/2o5/4x5/4*a3/2*c *b5/4*d - (contains "2doe")
other
Wythoffians
x3x3o5/4o5/4*a3/2*c *b5*d - 
x3o3x5/4o5/4*a3/2*c *b5*d - [Grünbaumian]
x3o3o5/4x5/4*a3/2*c *b5*d - [Grünbaumian]
o3x3o5/4x5/4*a3/2*c *b5*d - 
x3x3x5/4o5/4*a3/2*c *b5*d - [Grünbaumian]
x3x3o5/4x5/4*a3/2*c *b5*d - [Grünbaumian]
x3o3x5/4x5/4*a3/2*c *b5*d - [Grünbaumian]
x3x3x5/4x5/4*a3/2*c *b5*d - [Grünbaumian]
x3/2x3/2o5/4o5/4*a3/2*c *b5/4*d - [Grünbaumian]
x3/2o3/2o5/4x5/4*a3/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2x5/4o5/4*a3/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2o5/4x5/4*a3/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2x5/4x5/4*a3/2*c *b5/4*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3o5/2o5/2*a3/2*c *b5/3*d   (up)

  o3o3o5/2o5/2*a3/2*c *b5/3*d (µ=534) o3o3/2o5/3o5/2*a3*c *b5/3*d (µ=666)
quasiregulars
x3o3o5/2o5/2*a3/2*c *b5/3*d - (contains "2tet")
o3x3o5/2o5/2*a3/2*c *b5/3*d - (contains "2tet")
o3o3o5/2x5/2*a3/2*c *b5/3*d - (contains "2gissid")
x3o3/2o5/3o5/2*a3*c *b5/3*d - (contains "2tet")
o3x3/2o5/3o5/2*a3*c *b5/3*d - (contains "2tet")
o3o3/2o5/3x5/2*a3*c *b5/3*d - (contains "2gissid")
other
Wythoffians
x3x3o5/2o5/2*a3/2*c *b5/3*d - 
x3o3x5/2o5/2*a3/2*c *b5/3*d - [Grünbaumian]
x3o3o5/2x5/2*a3/2*c *b5/3*d - [Grünbaumian]
o3x3o5/2x5/2*a3/2*c *b5/3*d - 
x3x3x5/2o5/2*a3/2*c *b5/3*d - [Grünbaumian]
x3x3o5/2x5/2*a3/2*c *b5/3*d - [Grünbaumian]
x3o3x5/2x5/2*a3/2*c *b5/3*d - [Grünbaumian]
x3x3x5/2x5/2*a3/2*c *b5/3*d - [Grünbaumian]
x3x3/2o5/3o5/2*a3*c *b5/3*d - 
x3o3/2o5/3x5/2*a3*c *b5/3*d - [Grünbaumian]
o3x3/2x5/3o5/2*a3*c *b5/3*d - [Grünbaumian]
o3x3/2o5/3x5/2*a3*c *b5/3*d - 
x3x3/2x5/3o5/2*a3*c *b5/3*d - [Grünbaumian]
x3x3/2o5/3x5/2*a3*c *b5/3*d - [Grünbaumian]
o3x3/2x5/3x5/2*a3*c *b5/3*d - [Grünbaumian]
x3x3/2x5/3x5/2*a3*c *b5/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
  o3/2o3/2o5/2o5/2*a3/2*c *b5/2*d (µ=1146) o3/2o3/2o5/3o5/3*a3/2*c *b5/3*d (µ=2454)
quasiregulars
x3/2o3/2o5/2o5/2*a3/2*c *b5/2*d - (contains "2tet")
o3/2o3/2o5/2x5/2*a3/2*c *b5/2*d - (contains "2gissid")
x3/2o3/2o5/3o5/3*a3/2*c *b5/3*d - (contains "2tet")
o3/2o3/2o5/3x5/3*a3/2*c *b5/3*d - (contains "2gissid")
other
Wythoffians
x3/2x3/2o5/2o5/2*a3/2*c *b5/2*d - [Grünbaumian]
x3/2o3/2o5/2x5/2*a3/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2x5/2o5/2*a3/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2o5/2x5/2*a3/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2x5/2x5/2*a3/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2o5/3o5/3*a3/2*c *b5/3*d - [Grünbaumian]
x3/2o3/2o5/3x5/3*a3/2*c *b5/3*d - 
x3/2x3/2x5/3o5/3*a3/2*c *b5/3*d - [Grünbaumian]
x3/2x3/2o5/3x5/3*a3/2*c *b5/3*d - [Grünbaumian]
x3/2x3/2x5/3x5/3*a3/2*c *b5/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3o5o5*a3/2*c *b5/3*d   (up)

  o3o3o5o5*a3/2*c *b5/3*d (µ=10) o3/2o3/2o5o5*a3/2*c *b5/2*d (µ=230) o3o3/2o5/4o5*a3*c *b5/3*d (µ=470)
quasiregulars
x3o3o5o5*a3/2*c *b5/3*d - (contains "2tet")
o3x3o5o5*a3/2*c *b5/3*d - (contains "2tet")
o3o3o5x5*a3/2*c *b5/3*d - (contains "2doe")
x3/2o3/2o5o5*a3/2*c *b5/2*d - (contains "2tet")
o3/2x3/2o5o5*a3/2*c *b5/2*d - (contains "2tet")
o3/2o3/2o5x5*a3/2*c *b5/2*d - (contains "2doe")
x3o3/2o5/4o5*a3*c *b5/3*d - (contains "2tet")
o3x3/2o5/4o5*a3*c *b5/3*d - (contains "2tet")
o3o3/2x5/4o5*a3*c *b5/3*d - (contains "2tet")
o3o3/2o5/4x5*a3*c *b5/3*d - (contains "2doe")
other
Wythoffians
x3x3o5o5*a3/2*c *b5/3*d - 
x3o3x5o5*a3/2*c *b5/3*d - [Grünbaumian]
x3o3o5x5*a3/2*c *b5/3*d - 
o3x3o5x5*a3/2*c *b5/3*d - 
x3x3x5o5*a3/2*c *b5/3*d - [Grünbaumian]
x3x3o5x5*a3/2*c *b5/3*d - skiv datixathi
x3o3x5x5*a3/2*c *b5/3*d - [Grünbaumian]
x3x3x5x5*a3/2*c *b5/3*d - [Grünbaumian]
x3/2x3/2o5o5*a3/2*c *b5/2*d - [Grünbaumian]
x3/2o3/2x5o5*a3/2*c *b5/2*d - [Grünbaumian]
x3/2o3/2o5x5*a3/2*c *b5/2*d - 
o3/2x3/2o5x5*a3/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2x5o5*a3/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2o5x5*a3/2*c *b5/2*d - [Grünbaumian]
x3/2o3/2x5x5*a3/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2x5x5*a3/2*c *b5/2*d - [Grünbaumian]
x3x3/2o5/4o5*a3*c *b5/3*d - 
x3o3/2x5/4o5*a3*c *b5/3*d - 
x3o3/2o5/4x5*a3*c *b5/3*d - 
o3x3/2x5/4o5*a3*c *b5/3*d - [Grünbaumian]
o3x3/2o5/4x5*a3*c *b5/3*d - 
o3o3/2x5/4x5*a3*c *b5/3*d - [Grünbaumian]
x3x3/2x5/4o5*a3*c *b5/3*d - [Grünbaumian]
x3x3/2o5/4x5*a3*c *b5/3*d - 
x3o3/2x5/4x5*a3*c *b5/3*d - [Grünbaumian]
o3x3/2x5/4x5*a3*c *b5/3*d - [Grünbaumian]
x3x3/2x5/4x5*a3*c *b5/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o3/2o5o5/4*a3*c *b5/2*d (µ=730) o3o3o5/4o5/4*a3/2*c *b5/2*d (µ=1190) o3/2o3/2o5/4o5/4*a3/2*c *b5/3*d (µ=3370)
quasiregulars
x3o3/2o5o5/4*a3*c *b5/2*d - (contains "2tet")
o3x3/2o5o5/4*a3*c *b5/2*d - (contains "2tet")
o3o3/2x5o5/4*a3*c *b5/2*d - (contains "2tet")
o3o3/2o5x5/4*a3*c *b5/2*d - (contains "2doe")
x3o3o5/4o5/4*a3/2*c *b5/2*d - (contains "2tet")
o3x3o5/4o5/4*a3/2*c *b5/2*d - (contains "2tet")
o3o3o5/4x5/4*a3/2*c *b5/2*d - (contains "2doe")
x3/2o3/2o5/4o5/4*a3/2*c *b5/3*d - (contains "2tet")
o3/2x3/2o5/4o5/4*a3/2*c *b5/3*d - (contains "2tet")
o3/2o3/2o5/4x5/4*a3/2*c *b5/3*d - (contains "2doe")
other
Wythoffians
x3x3/2o5o5/4*a3*c *b5/2*d - 
x3o3/2x5o5/4*a3*c *b5/2*d - 
x3o3/2o5x5/4*a3*c *b5/2*d - [Grünbaumian]
o3x3/2x5o5/4*a3*c *b5/2*d - [Grünbaumian]
o3x3/2o5x5/4*a3*c *b5/2*d - [Grünbaumian]
o3o3/2x5x5/4*a3*c *b5/2*d - 
x3x3/2x5o5/4*a3*c *b5/2*d - [Grünbaumian]
x3x3/2o5x5/4*a3*c *b5/2*d - [Grünbaumian]
x3o3/2x5x5/4*a3*c *b5/2*d - [Grünbaumian]
o3x3/2x5x5/4*a3*c *b5/2*d - [Grünbaumian]
x3x3/2x5x5/4*a3*c *b5/2*d - [Grünbaumian]
x3x3o5/4o5/4*a3/2*c *b5/2*d - 
x3o3x5/4o5/4*a3/2*c *b5/2*d - [Grünbaumian]
x3o3o5/4x5/4*a3/2*c *b5/2*d - [Grünbaumian]
o3x3o5/4x5/4*a3/2*c *b5/2*d - [Grünbaumian]
x3x3x5/4o5/4*a3/2*c *b5/2*d - [Grünbaumian]
x3x3o5/4x5/4*a3/2*c *b5/2*d - [Grünbaumian]
x3o3x5/4x5/4*a3/2*c *b5/2*d - [Grünbaumian]
x3x3x5/4x5/4*a3/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2o5/4o5/4*a3/2*c *b5/3*d - [Grünbaumian]
x3/2o3/2x5/4o5/4*a3/2*c *b5/3*d - [Grünbaumian]
x3/2o3/2o5/4x5/4*a3/2*c *b5/3*d - [Grünbaumian]
o3/2x3/2o5/4x5/4*a3/2*c *b5/3*d - [Grünbaumian]
x3/2x3/2x5/4o5/4*a3/2*c *b5/3*d - [Grünbaumian]
x3/2x3/2o5/4x5/4*a3/2*c *b5/3*d - [Grünbaumian]
x3/2o3/2x5/4x5/4*a3/2*c *b5/3*d - [Grünbaumian]
x3/2x3/2x5/4x5/4*a3/2*c *b5/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3o5/3o5/3*a3/2*c *b5*d   (up)

  o3o3o5/3o5/3*a3/2*c *b5*d (µ=230) o3/2o3o5/3o5/2*a3*c *b5*d (µ=250) o3/2o3/2o5/2o5/2*a3/2*c *b5*d (µ=710)
quasiregulars
x3o3o5/3o5/3*a3/2*c *b5*d - (contains "2tet")
o3x3o5/3o5/3*a3/2*c *b5*d - (contains "2tet")
o3o3o5/3x5/3*a3/2*c *b5*d - (contains "2gissid")
x3/2o3o5/3o5/2*a3*c *b5*d - (contains "2tet")
o3/2x3o5/3o5/2*a3*c *b5*d - (contains "2tet")
o3/2o3x5/3o5/2*a3*c *b5*d - (contains "2tet")
o3/2o3o5/3x5/2*a3*c *b5*d - (contains "2gissid")
x3/2o3/2o5/2o5/2*a3/2*c *b5*d - (contains "2tet")
o3/2x3/2o5/2o5/2*a3/2*c *b5*d - (contains "2tet")
o3/2o3/2o5/2x5/2*a3/2*c *b5*d - (contains "2gissid")
other
Wythoffians
x3x3o5/3o5/3*a3/2*c *b5*d - 
x3o3x5/3o5/3*a3/2*c *b5*d - [Grünbaumian]
x3o3o5/3x5/3*a3/2*c *b5*d - 
o3x3o5/3x5/3*a3/2*c *b5*d - 
x3x3x5/3o5/3*a3/2*c *b5*d - [Grünbaumian]
x3x3o5/3x5/3*a3/2*c *b5*d - gikkiv datixathi
x3o3x5/3x5/3*a3/2*c *b5*d - [Grünbaumian]
x3x3x5/3x5/3*a3/2*c *b5*d - [Grünbaumian]
x3/2x3o5/3o5/2*a3*c *b5*d - [Grünbaumian]
x3/2o3x5/3o5/2*a3*c *b5*d - 
x3/2o3o5/3x5/2*a3*c *b5*d - [Grünbaumian]
o3/2x3x5/3o5/2*a3*c *b5*d - 
o3/2x3o5/3x5/2*a3*c *b5*d - 
o3/2o3x5/3x5/2*a3*c *b5*d - 
x3/2x3x5/3o5/2*a3*c *b5*d - [Grünbaumian]
x3/2x3o5/3x5/2*a3*c *b5*d - [Grünbaumian]
x3/2o3x5/3x5/2*a3*c *b5*d - [Grünbaumian]
o3/2x3x5/3x5/2*a3*c *b5*d - 
x3/2x3x5/3x5/2*a3*c *b5*d - [Grünbaumian]
x3/2x3/2o5/2o5/2*a3/2*c *b5*d - [Grünbaumian]
x3/2o3/2x5/2o5/2*a3/2*c *b5*d - [Grünbaumian]
x3/2o3/2o5/2x5/2*a3/2*c *b5*d - [Grünbaumian]
o3/2x3/2o5/2x5/2*a3/2*c *b5*d - 
x3/2x3/2x5/2o5/2*a3/2*c *b5*d - [Grünbaumian]
x3/2x3/2o5/2x5/2*a3/2*c *b5*d - [Grünbaumian]
x3/2o3/2x5/2x5/2*a3/2*c *b5*d - [Grünbaumian]
x3/2x3/2x5/2x5/2*a3/2*c *b5*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o3/2o5/3o5/2*a3*c *b5/4*d (µ=950) o3o3o5/2o5/2*a3/2*c *b5/4*d (µ=970) o3/2o3/2o5/3o5/3*a3/2*c *b5/4*d (µ=2890)
quasiregulars
x3o3/2o5/3o5/2*a3*c *b5/4*d - (contains "2tet")
o3x3/2o5/3o5/2*a3*c *b5/4*d - (contains "2tet")
o3o3/2x5/3o5/2*a3*c *b5/4*d - (contains "2tet")
o3o3/2o5/3x5/2*a3*c *b5/4*d - (contains "2gissid")
x3o3o5/2o5/2*a3/2*c *b5/4*d - (contains "2tet")
o3x3o5/2o5/2*a3/2*c *b5/4*d - (contains "2tet")
o3o3o5/2x5/2*a3/2*c *b5/4*d - (contains "2gissid")
x3/2o3/2o5/3o5/3*a3/2*c *b5/4*d - (contains "2tet")
o3/2x3/2o5/3o5/3*a3/2*c *b5/4*d - (contains "2tet")
o3/2o3/2o5/3x5/3*a3/2*c *b5/4*d - (contains "2gissid")
other
Wythoffians
x3x3/2o5/3o5/2*a3*c *b5/4*d - 
x3o3/2x5/3o5/2*a3*c *b5/4*d - 
x3o3/2o5/3x5/2*a3*c *b5/4*d - [Grünbaumian]
o3x3/2x5/3o5/2*a3*c *b5/4*d - [Grünbaumian]
o3x3/2o5/3x5/2*a3*c *b5/4*d - [Grünbaumian]
o3o3/2x5/3x5/2*a3*c *b5/4*d - 
x3x3/2x5/3o5/2*a3*c *b5/4*d - [Grünbaumian]
x3x3/2o5/3x5/2*a3*c *b5/4*d - [Grünbaumian]
x3o3/2x5/3x5/2*a3*c *b5/4*d - [Grünbaumian]
o3x3/2x5/3x5/2*a3*c *b5/4*d - [Grünbaumian]
x3x3/2x5/3x5/2*a3*c *b5/4*d - [Grünbaumian]
x3x3o5/2o5/2*a3/2*c *b5/4*d - 
x3o3x5/2o5/2*a3/2*c *b5/4*d - [Grünbaumian]
x3o3o5/2x5/2*a3/2*c *b5/4*d - [Grünbaumian]
o3x3o5/2x5/2*a3/2*c *b5/4*d - [Grünbaumian]
x3x3x5/2o5/2*a3/2*c *b5/4*d - [Grünbaumian]
x3x3o5/2x5/2*a3/2*c *b5/4*d - [Grünbaumian]
x3o3x5/2x5/2*a3/2*c *b5/4*d - [Grünbaumian]
x3x3x5/2x5/2*a3/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2o5/3o5/3*a3/2*c *b5/4*d - [Grünbaumian]
x3/2o3/2x5/3o5/3*a3/2*c *b5/4*d - [Grünbaumian]
x3/2o3/2o5/3x5/3*a3/2*c *b5/4*d - 
o3/2x3/2o5/3x5/3*a3/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2x5/3o5/3*a3/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2o5/3x5/3*a3/2*c *b5/4*d - [Grünbaumian]
x3/2o3/2x5/3x5/3*a3/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2x5/3x5/3*a3/2*c *b5/4*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o5o3o5*a3/2*c *b5/3*d   (up)

  o3o5o3o5*a3/2*c *b5/3*d (µ=56) o3/2o5o3/2o5*a3*c *b5/2*d (µ=296) o3/2o5o3o5/4*a3*c *b5/3*d (µ=424)
quasiregulars
x3o5o3o5*a3/2*c *b5/3*d - (contains "2gike")
o3x5o3o5*a3/2*c *b5/3*d - (contains gacid)
x3/2o5o3/2o5*a3*c *b5/2*d - (contains "2gike")
o3/2x5o3/2o5*a3*c *b5/2*d - (contains gacid)
x3/2o5o3o5/4*a3*c *b5/3*d - (contains "2gike")
o3/2x5o3o5/4*a3*c *b5/3*d - (contains gacid)
o3/2o5x3o5/4*a3*c *b5/3*d - (contains "2gike")
o3/2o5o3x5/4*a3*c *b5/3*d - (contains gacid)
other
Wythoffians
x3x5o3o5*a3/2*c *b5/3*d - 
x3o5x3o5*a3/2*c *b5/3*d - [Grünbaumian]
x3o5o3x5*a3/2*c *b5/3*d - 
o3x5o3x5*a3/2*c *b5/3*d - 
x3x5x3o5*a3/2*c *b5/3*d - [Grünbaumian]
x3x5o3x5*a3/2*c *b5/3*d - 
x3x5x3x5*a3/2*c *b5/3*d - [Grünbaumian]
x3/2x5o3/2o5*a3*c *b5/2*d - [Grünbaumian]
x3/2o5x3/2o5*a3*c *b5/2*d - 
x3/2o5o3/2x5*a3*c *b5/2*d - 
o3/2x5o3/2x5*a3*c *b5/2*d - [Grünbaumian]
x3/2x5x3/2o5*a3*c *b5/2*d - [Grünbaumian]
x3/2x5o3/2x5*a3*c *b5/2*d - [Grünbaumian]
x3/2x5x3/2x5*a3*c *b5/2*d - [Grünbaumian]
x3/2x5o3o5/4*a3*c *b5/3*d - [Grünbaumian]
x3/2o5x3o5/4*a3*c *b5/3*d - 
x3/2o5o3x5/4*a3*c *b5/3*d - [Grünbaumian]
o3/2x5x3o5/4*a3*c *b5/3*d - 
o3/2x5o3x5/4*a3*c *b5/3*d - "2gidditdy"
o3/2o5x3x5/4*a3*c *b5/3*d - 
x3/2x5x3o5/4*a3*c *b5/3*d - [Grünbaumian]
x3/2x5o3x5/4*a3*c *b5/3*d - [Grünbaumian]
x3/2o5x3x5/4*a3*c *b5/3*d - [Grünbaumian]
o3/2x5x3x5/4*a3*c *b5/3*d - 
x3/2x5x3x5/4*a3*c *b5/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o5o3/2o5/4*a3/2*c *b5/2*d (µ=664) o3o5/4o3o5/4*a3*c *b5/2*d (µ=1256) o3/2o5/4o3/2o5/4*a3/2*c *b5/3*d (µ=3416)
quasiregulars
x3o5o3/2o5/4*a3/2*c *b5/2*d - (contains "2gike")
o3x5o3/2o5/4*a3/2*c *b5/2*d - (contains gacid)
o3o5x3/2o5/4*a3/2*c *b5/2*d - (contains "2gike")
o3o5o3/2x5/4*a3/2*c *b5/2*d - (contains gacid)
x3o5/4o3o5/4*a3*c *b5/2*d - (contains "2gike")
o3x5/4o3o5/4*a3*c *b5/2*d - (contains gacid)
x3/2o5/4o3/2o5/4*a3/2*c *b5/3*d - (contains "2gike")
o3/2x5/4o3/2o5/4*a3/2*c *b5/3*d - (contains gacid)
other
Wythoffians
x3x5o3/2o5/4*a3/2*c *b5/2*d - 
x3o5x3/2o5/4*a3/2*c *b5/2*d - [Grünbaumian]
x3o5o3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian]
o3x5x3/2o5/4*a3/2*c *b5/2*d - 
o3x5o3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian]
o3o5x3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian]
x3x5x3/2o5/4*a3/2*c *b5/2*d - [Grünbaumian]
x3x5o3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian]
x3o5x3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian]
o3x5x3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian]
x3x5x3/2x5/4*a3/2*c *b5/2*d - [Grünbaumian]
x3x5/4o3o5/4*a3*c *b5/2*d - 
x3o5/4x3o5/4*a3*c *b5/2*d - 
x3o5/4o3x5/4*a3*c *b5/2*d - [Grünbaumian]
o3x5/4o3x5/4*a3*c *b5/2*d - [Grünbaumian]
x3x5/4x3o5/4*a3*c *b5/2*d - [Grünbaumian]
x3x5/4o3x5/4*a3*c *b5/2*d - [Grünbaumian]
x3x5/4x3x5/4*a3*c *b5/2*d - [Grünbaumian]
x3/2x5/4o3/2o5/4*a3/2*c *b5/3*d - [Grünbaumian]
x3/2o5/4x3/2o5/4*a3/2*c *b5/3*d - [Grünbaumian]
x3/2o5/4o3/2x5/4*a3/2*c *b5/3*d - [Grünbaumian]
o3/2x5/4o3/2x5/4*a3/2*c *b5/3*d - 
x3/2x5/4x3/2o5/4*a3/2*c *b5/3*d - [Grünbaumian]
x3/2x5/4o3/2x5/4*a3/2*c *b5/3*d - [Grünbaumian]
x3/2x5/4x3/2x5/4*a3/2*c *b5/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o5/2o3o5/2*a3*c *b5/4*d   (up)

  o3o5/2o3o5/2*a3*c *b5/4*d (µ=104) o3o5/2o3/2o5/3*a3*c *b5*d (µ=136) o3o5/3o3o5/3*a3/2*c *b5*d (µ=344)
quasiregulars
x3o5/2o3o5/2*a3*c *b5/4*d - (contains "2ike")
o3x5/2o3o5/2*a3*c *b5/4*d - (contains cid)
x3o5/2o3/2o5/3*a3*c *b5*d - (contains "2ike")
o3x5/2o3/2o5/3*a3*c *b5*d - (contains cid)
o3o5/2x3/2o5/3*a3*c *b5*d - (contains "2ike")
o3o5/2o3/2x5/3*a3*c *b5*d - (contains cid)
x3o5/3o3o5/3*a3/2*c *b5*d - (contains "2ike")
o3x5/3o3o5/3*a3/2*c *b5*d - (contains cid)
other
Wythoffians
x3x5/2o3o5/2*a3*c *b5/4*d - 
x3o5/2x3o5/2*a3*c *b5/4*d - 
x3o5/2o3x5/2*a3*c *b5/4*d - [Grünbaumian]
o3x5/2o3x5/2*a3*c *b5/4*d - [Grünbaumian]
x3x5/2x3o5/2*a3*c *b5/4*d - [Grünbaumian]
x3x5/2o3x5/2*a3*c *b5/4*d - [Grünbaumian]
x3x5/2x3x5/2*a3*c *b5/4*d - [Grünbaumian]
x3x5/2o3/2o5/3*a3*c *b5*d - 
x3o5/2x3/2o5/3*a3*c *b5*d - 
x3o5/2o3/2x5/3*a3*c *b5*d - 
o3x5/2x3/2o5/3*a3*c *b5*d - [Grünbaumian]
o3x5/2o3/2x5/3*a3*c *b5*d - "2sidditdy"
o3o5/2x3/2x5/3*a3*c *b5*d - [Grünbaumian]
x3x5/2x3/2o5/3*a3*c *b5*d - [Grünbaumian]
x3x5/2o3/2x5/3*a3*c *b5*d - 
x3o5/2x3/2x5/3*a3*c *b5*d - [Grünbaumian]
o3x5/2x3/2x5/3*a3*c *b5*d - [Grünbaumian]
x3x5/2x3/2x5/3*a3*c *b5*d - [Grünbaumian]
x3x5/3o3o5/3*a3/2*c *b5*d - 
x3o5/3x3o5/3*a3/2*c *b5*d - [Grünbaumian]
x3o5/3o3x5/3*a3/2*c *b5*d - 
o3x5/3o3x5/3*a3/2*c *b5*d - 
x3x5/3x3o5/3*a3/2*c *b5*d - [Grünbaumian]
x3x5/3o3x5/3*a3/2*c *b5*d - 
x3x5/3x3x5/3*a3/2*c *b5*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3/2o5/2o3/2o5/2*a3/2*c *b5*d (µ=824) o3o5/3o3/2o5/2*a3/2*c *b5/4*d (µ=1816) o3/2o5/3o3/2o5/3*a3*c *b5/4*d (µ=2024)
quasiregulars
x3/2o5/2o3/2o5/2*a3/2*c *b5*d - (contains "2ike")
o3/2x5/2o3/2o5/2*a3/2*c *b5*d - (contains cid)
x3o5/3o3/2o5/2*a3/2*c *b5/4*d - (contains "2ike")
o3x5/3o3/2o5/2*a3/2*c *b5/4*d - (contains cid)
o3o5/3x3/2o5/2*a3/2*c *b5/4*d - (contains "2ike")
o3o5/3o3/2x5/2*a3/2*c *b5/4*d - (contains cid)
x3/2o5/3o3/2o5/3*a3*c *b5/4*d - (contains "2ike")
o3/2x5/3o3/2o5/3*a3*c *b5/4*d - (contains cid)
other
Wythoffians
x3/2x5/2o3/2o5/2*a3/2*c *b5*d - [Grünbaumian]
x3/2o5/2x3/2o5/2*a3/2*c *b5*d - [Grünbaumian]
x3/2o5/2o3/2x5/2*a3/2*c *b5*d - [Grünbaumian]
o3/2x5/2o3/2x5/2*a3/2*c *b5*d - 
x3/2x5/2x3/2o5/2*a3/2*c *b5*d - [Grünbaumian]
x3/2x5/2o3/2x5/2*a3/2*c *b5*d - [Grünbaumian]
x3/2x5/2x3/2x5/2*a3/2*c *b5*d - [Grünbaumian]
x3x5/3o3/2o5/2*a3/2*c *b5/4*d - 
x3o5/3x3/2o5/2*a3/2*c *b5/4*d - [Grünbaumian]
x3o5/3o3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian]
o3x5/3x3/2o5/2*a3/2*c *b5/4*d - 
o3x5/3o3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian]
o3o5/3x3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian]
x3x5/3x3/2o5/2*a3/2*c *b5/4*d - [Grünbaumian]
x3x5/3o3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian]
x3o5/3x3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian]
o3x5/3x3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian]
x3x5/3x3/2x5/2*a3/2*c *b5/4*d - [Grünbaumian]
x3/2x5/3o3/2o5/3*a3*c *b5/4*d - [Grünbaumian]
x3/2o5/3x3/2o5/3*a3*c *b5/4*d - 
x3/2o5/3o3/2x5/3*a3*c *b5/4*d - 
o3/2x5/3o3/2x5/3*a3*c *b5/4*d - [Grünbaumian]
x3/2x5/3x3/2o5/3*a3*c *b5/4*d - [Grünbaumian]
x3/2x5/3o3/2x5/3*a3*c *b5/4*d - [Grünbaumian]
x3/2x5/3x3/2x5/3*a3*c *b5/4*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3/2o3/2o5o5*a5/4*c *b5*d   (up)

  o3/2o3/2o5o5*a5/4*c *b5*d (µ=92) o3o3/2o5o5/4*a5*c *b5*d (µ=148) o3o3/2o5/4o5*a5*c *b5/4*d (µ=572)
quasiregulars
x3/2o3/2o5o5*a5/4*c *b5*d - (contains "2gad")
o3/2x3/2o5o5*a5/4*c *b5*d - (contains "2gike")
o3/2o3/2o5x5*a5/4*c *b5*d - (contains "2doe")
x3o3/2o5o5/4*a5*c *b5*d - (contains "2gad")
o3x3/2o5o5/4*a5*c *b5*d - (contains "2gike")
o3o3/2x5o5/4*a5*c *b5*d - (contains "2gad")
o3o3/2o5x5/4*a5*c *b5*d - (contains "2doe")
x3o3/2o5/4o5*a5*c *b5/4*d - (contains "2gad")
o3x3/2o5/4o5*a5*c *b5/4*d - (contains "2gike")
o3o3/2x5/4o5*a5*c *b5/4*d - (contains "2gad")
o3o3/2o5/4x5*a5*c *b5/4*d - (contains "2doe")
other
Wythoffians
x3/2x3/2o5o5*a5/4*c *b5*d - [Grünbaumian]
x3/2o3/2x5o5*a5/4*c *b5*d - [Grünbaumian]
x3/2o3/2o5x5*a5/4*c *b5*d - 
o3/2x3/2o5x5*a5/4*c *b5*d - 
x3/2x3/2x5o5*a5/4*c *b5*d - [Grünbaumian]
x3/2x3/2o5x5*a5/4*c *b5*d - [Grünbaumian]
x3/2o3/2x5x5*a5/4*c *b5*d - [Grünbaumian]
x3/2x3/2x5x5*a5/4*c *b5*d - [Grünbaumian]
x3x3/2o5o5/4*a5*c *b5*d - 
x3o3/2x5o5/4*a5*c *b5*d - 
x3o3/2o5x5/4*a5*c *b5*d - [Grünbaumian]
o3x3/2x5o5/4*a5*c *b5*d - [Grünbaumian]
o3x3/2o5x5/4*a5*c *b5*d - 
o3o3/2x5x5/4*a5*c *b5*d - 
x3x3/2x5o5/4*a5*c *b5*d - [Grünbaumian]
x3x3/2o5x5/4*a5*c *b5*d - [Grünbaumian]
x3o3/2x5x5/4*a5*c *b5*d - [Grünbaumian]
o3x3/2x5x5/4*a5*c *b5*d - [Grünbaumian]
x3x3/2x5x5/4*a5*c *b5*d - [Grünbaumian]
x3x3/2o5/4o5*a5*c *b5/4*d - 
x3o3/2x5/4o5*a5*c *b5/4*d - 
x3o3/2o5/4x5*a5*c *b5/4*d - 
o3x3/2x5/4o5*a5*c *b5/4*d - [Grünbaumian]
o3x3/2o5/4x5*a5*c *b5/4*d - [Grünbaumian]
o3o3/2x5/4x5*a5*c *b5/4*d - [Grünbaumian]
x3x3/2x5/4o5*a5*c *b5/4*d - [Grünbaumian]
x3x3/2o5/4x5*a5*c *b5/4*d - [Grünbaumian]
x3o3/2x5/4x5*a5*c *b5/4*d - [Grünbaumian]
o3x3/2x5/4x5*a5*c *b5/4*d - [Grünbaumian]
x3x3/2x5/4x5*a5*c *b5/4*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o3o5o5*a5/4*c *b5/4*d (µ=628) o3o3o5/4o5/4*a5/4*c *b5*d (µ=1052) o3/2o3/2o5/4o5/4*a5/4*c *b5/4*d (µ=3988)
quasiregulars
x3o3o5o5*a5/4*c *b5/4*d - (contains "2gad")
o3x3o5o5*a5/4*c *b5/4*d - (contains "2gike")
o3o3o5x5*a5/4*c *b5/4*d - (contains "2doe")
x3o3o5/4o5/4*a5/4*c *b5*d - (contains "2gad")
o3x3o5/4o5/4*a5/4*c *b5*d - (contains "2gike")
o3o3o5/4x5/4*a5/4*c *b5*d - (contains "2doe")
x3/2o3/2o5/4o5/4*a5/4*c *b5/4*d - (contains "2gad")
o3/2x3/2o5/4o5/4*a5/4*c *b5/4*d - (contains "2gike")
o3/2o3/2o5/4x5/4*a5/4*c *b5/4*d - (contains "2doe")
other
Wythoffians
x3x3o5o5*a5/4*c *b5/4*d - 
x3o3x5o5*a5/4*c *b5/4*d - [Grünbaumian]
x3o3o5x5*a5/4*c *b5/4*d - 
o3x3o5x5*a5/4*c *b5/4*d - [Grünbaumian]
x3x3x5o5*a5/4*c *b5/4*d - [Grünbaumian]
x3x3o5x5*a5/4*c *b5/4*d - [Grünbaumian]
x3o3x5x5*a5/4*c *b5/4*d - [Grünbaumian]
x3x3x5x5*a5/4*c *b5/4*d - [Grünbaumian]
x3x3o5/4o5/4*a5/4*c *b5*d - 
x3o3x5/4o5/4*a5/4*c *b5*d - [Grünbaumian]
x3o3o5/4x5/4*a5/4*c *b5*d - [Grünbaumian]
o3x3o5/4x5/4*a5/4*c *b5*d - 
x3x3x5/4o5/4*a5/4*c *b5*d - [Grünbaumian]
x3x3o5/4x5/4*a5/4*c *b5*d - [Grünbaumian]
x3o3x5/4x5/4*a5/4*c *b5*d - [Grünbaumian]
x3x3x5/4x5/4*a5/4*c *b5*d - [Grünbaumian]
x3/2x3/2o5/4o5/4*a5/4*c *b5/4*d - [Grünbaumian]
x3/2o3/2x5/4o5/4*a5/4*c *b5/4*d - [Grünbaumian]
x3/2o3/2o5/4x5/4*a5/4*c *b5/4*d - [Grünbaumian]
o3/2x3/2o5/4x5/4*a5/4*c *b5/4*d - [Grünbaumian]
x3/2x3/2x5/4o5/4*a5/4*c *b5/4*d - [Grünbaumian]
x3/2x3/2o5/4x5/4*a5/4*c *b5/4*d - [Grünbaumian]
x3/2o3/2x5/4x5/4*a5/4*c *b5/4*d - [Grünbaumian]
x3/2x3/2x5/4x5/4*a5/4*c *b5/4*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3o5/2o5/2*a5/2*c *b5/3*d   (up)

  o3o3o5/2o5/2*a5/2*c *b5/3*d (µ=52) o3o3o5/3o5/3*a5/2*c *b5/2*d (µ=188) o3/2o3/2o5/2o5/2*a5/2*c *b5/2*d (µ=668)
quasiregulars
x3o3o5/2o5/2*a5/2*c *b5/3*d - (contains "2sissid")
o3x3o5/2o5/2*a5/2*c *b5/3*d - (contains "2ike")
o3o3o5/2x5/2*a5/2*c *b5/3*d - (contains "2sissid")
x3o3o5/3o5/3*a5/2*c *b5/2*d - (contains "2sissid")
o3x3o5/3o5/3*a5/2*c *b5/2*d - (contains "2ike")
o3o3o5/3x5/3*a5/2*c *b5/2*d - (contains "2sissid")
x3/2o3/2o5/2o5/2*a5/2*c *b5/2*d - (contains "2sissid")
o3/2x3/2o5/2o5/2*a5/2*c *b5/2*d - (contains "2ike")
o3/2o3/2o5/2x5/2*a5/2*c *b5/2*d - (contains "2sissid")
other
Wythoffians
x3x3o5/2o5/2*a5/2*c *b5/3*d - 
x3o3x5/2o5/2*a5/2*c *b5/3*d - [Grünbaumian]
x3o3o5/2x5/2*a5/2*c *b5/3*d - [Grünbaumian]
o3x3o5/2x5/2*a5/2*c *b5/3*d - 
x3x3x5/2o5/2*a5/2*c *b5/3*d - [Grünbaumian]
x3x3o5/2x5/2*a5/2*c *b5/3*d - [Grünbaumian]
x3o3x5/2x5/2*a5/2*c *b5/3*d - [Grünbaumian]
x3x3x5/2x5/2*a5/2*c *b5/3*d - [Grünbaumian]
x3x3o5/3o5/3*a5/2*c *b5/2*d - 
x3o3x5/3o5/3*a5/2*c *b5/2*d - [Grünbaumian]
x3o3o5/3x5/3*a5/2*c *b5/2*d - 
o3x3o5/3x5/3*a5/2*c *b5/2*d - [Grünbaumian]
x3x3x5/3o5/3*a5/2*c *b5/2*d - [Grünbaumian]
x3x3o5/3x5/3*a5/2*c *b5/2*d - [Grünbaumian]
x3o3x5/3x5/3*a5/2*c *b5/2*d - [Grünbaumian]
x3x3x5/3x5/3*a5/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2o5/2o5/2*a5/2*c *b5/2*d - [Grünbaumian]
x3/2o3/2x5/2o5/2*a5/2*c *b5/2*d - [Grünbaumian]
x3/2o3/2o5/2x5/2*a5/2*c *b5/2*d - [Grünbaumian]
o3/2x3/2o5/2x5/2*a5/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2x5/2o5/2*a5/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2o5/2x5/2*a5/2*c *b5/2*d - [Grünbaumian]
x3/2o3/2x5/2x5/2*a5/2*c *b5/2*d - [Grünbaumian]
x3/2x3/2x5/2x5/2*a5/2*c *b5/2*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o3/2o5/2o5/3*a5/3*c *b5/2*d (µ=1012) o3o3/2o5/3o5/2*a5/3*c *b5/3*d (µ=1148) o3/2o3/2o5/3o5/3*a5/2*c *b5/3*d (µ=1972)
quasiregulars
x3o3/2o5/2o5/3*a5/3*c *b5/2*d - (contains "2sissid")
o3x3/2o5/2o5/3*a5/3*c *b5/2*d - (contains "2ike")
o3o3/2x5/2o5/3*a5/3*c *b5/2*d - (contains "2sissid")
o3o3/2o5/2x5/3*a5/3*c *b5/2*d - (contains "2sissid")
x3o3/2o5/3o5/2*a5/3*c *b5/3*d - (contains "2sissid")
o3x3/2o5/3o5/2*a5/3*c *b5/3*d - (contains "2ike")
o3o3/2x5/3o5/2*a5/3*c *b5/3*d - (contains "2sissid")
o3o3/2o5/3x5/2*a5/3*c *b5/3*d - (contains "2sissid")
x3/2o3/2o5/3o5/3*a5/2*c *b5/3*d - (contains "2sissid")
o3/2x3/2o5/3o5/3*a5/2*c *b5/3*d - (contains "2ike")
o3/2o3/2o5/3x5/3*a5/2*c *b5/3*d - (contains "2sissid")
other
Wythoffians
x3x3/2o5/2o5/3*a5/3*c *b5/2*d - 
x3o3/2x5/2o5/3*a5/3*c *b5/2*d - 
x3o3/2o5/2x5/3*a5/3*c *b5/2*d - 
o3x3/2x5/2o5/3*a5/3*c *b5/2*d - [Grünbaumian]
o3x3/2o5/2x5/3*a5/3*c *b5/2*d - [Grünbaumian]
o3o3/2x5/2x5/3*a5/3*c *b5/2*d - [Grünbaumian]
x3x3/2x5/2o5/3*a5/3*c *b5/2*d - [Grünbaumian]
x3x3/2o5/2x5/3*a5/3*c *b5/2*d - [Grünbaumian]
x3o3/2x5/2x5/3*a5/3*c *b5/2*d - [Grünbaumian]
o3x3/2x5/2x5/3*a5/3*c *b5/2*d - [Grünbaumian]
x3x3/2x5/2x5/3*a5/3*c *b5/2*d - [Grünbaumian]
x3x3/2o5/3o5/2*a5/3*c *b5/3*d - 
x3o3/2x5/3o5/2*a5/3*c *b5/3*d - 
x3o3/2o5/3x5/2*a5/3*c *b5/3*d - [Grünbaumian]
o3x3/2x5/3o5/2*a5/3*c *b5/3*d - [Grünbaumian]
o3x3/2o5/3x5/2*a5/3*c *b5/3*d - 
o3o3/2x5/3x5/2*a5/3*c *b5/3*d - 
x3x3/2x5/3o5/2*a5/3*c *b5/3*d - [Grünbaumian]
x3x3/2o5/3x5/2*a5/3*c *b5/3*d - [Grünbaumian]
x3o3/2x5/3x5/2*a5/3*c *b5/3*d - [Grünbaumian]
o3x3/2x5/3x5/2*a5/3*c *b5/3*d - [Grünbaumian]
x3x3/2x5/3x5/2*a5/3*c *b5/3*d - [Grünbaumian]
x3/2x3/2o5/3o5/3*a5/2*c *b5/3*d - [Grünbaumian]
x3/2o3/2x5/3o5/3*a5/2*c *b5/3*d - [Grünbaumian]
x3/2o3/2o5/3x5/3*a5/2*c *b5/3*d - 
o3/2x3/2o5/3x5/3*a5/2*c *b5/3*d - 
x3/2x3/2x5/3o5/3*a5/2*c *b5/3*d - [Grünbaumian]
x3/2x3/2o5/3x5/3*a5/2*c *b5/3*d - [Grünbaumian]
x3/2o3/2x5/3x5/3*a5/2*c *b5/3*d - [Grünbaumian]
x3/2x3/2x5/3x5/3*a5/2*c *b5/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3o5o5*a5/4*c *b5/3*d   (up)

  o3o3o5o5*a5/4*c *b5/3*d (µ=172) o3o3/2o5/4o5*a5*c *b5/3*d (µ=308) o3o3/2o5o5/4*a5*c *b5/2*d (µ=412)
quasiregulars
x3o3o5o5*a5/4*c *b5/3*d - (contains "2gad")
o3x3o5o5*a5/4*c *b5/3*d - (contains "2gike")
o3o3o5x5*a5/4*c *b5/3*d - (contains "2gad")
x3o3/2o5/4o5*a5*c *b5/3*d - (contains "2gad")
o3x3/2o5/4o5*a5*c *b5/3*d - (contains "2gike")
o3o3/2x5/4o5*a5*c *b5/3*d - (contains "2gad")
o3o3/2o5/4x5*a5*c *b5/3*d - (contains "2gad")
x3o3/2o5o5/4*a5*c *b5/2*d - (contains "2gad")
o3x3/2o5o5/4*a5*c *b5/2*d - (contains "2gike")
o3o3/2x5o5/4*a5*c *b5/2*d - (contains "2gad")
o3o3/2o5x5/4*a5*c *b5/2*d - (contains "2gad")
other
Wythoffians
x3x3o5o5*a5/4*c *b5/3*d - 
x3o3x5o5*a5/4*c *b5/3*d - [Grünbaumian]
x3o3o5x5*a5/4*c *b5/3*d - 
o3x3o5x5*a5/4*c *b5/3*d - 
x3x3x5o5*a5/4*c *b5/3*d - [Grünbaumian]
x3x3o5x5*a5/4*c *b5/3*d - 
x3o3x5x5*a5/4*c *b5/3*d - [Grünbaumian]
x3x3x5x5*a5/4*c *b5/3*d - [Grünbaumian]
x3x3/2o5/4o5*a5*c *b5/3*d - 
x3o3/2x5/4o5*a5*c *b5/3*d - 
x3o3/2o5/4x5*a5*c *b5/3*d - 
o3x3/2x5/4o5*a5*c *b5/3*d - [Grünbaumian]
o3x3/2o5/4x5*a5*c *b5/3*d - 
o3o3/2x5/4x5*a5*c *b5/3*d - [Grünbaumian]
x3x3/2x5/4o5*a5*c *b5/3*d - [Grünbaumian]
x3x3/2o5/4x5*a5*c *b5/3*d - 
x3o3/2x5/4x5*a5*c *b5/3*d - [Grünbaumian]
o3x3/2x5/4x5*a5*c *b5/3*d - [Grünbaumian]
x3x3/2x5/4x5*a5*c *b5/3*d - [Grünbaumian]
x3x3/2o5o5/4*a5*c *b5/2*d - 
x3o3/2x5o5/4*a5*c *b5/2*d - 
x3o3/2o5x5/4*a5*c *b5/2*d - [Grünbaumian]
o3x3/2x5o5/4*a5*c *b5/2*d - [Grünbaumian]
o3x3/2o5x5/4*a5*c *b5/2*d - [Grünbaumian]
o3o3/2x5x5/4*a5*c *b5/2*d - 
x3x3/2x5o5/4*a5*c *b5/2*d - [Grünbaumian]
x3x3/2o5x5/4*a5*c *b5/2*d - [Grünbaumian]
x3o3/2x5x5/4*a5*c *b5/2*d - [Grünbaumian]
o3x3/2x5x5/4*a5*c *b5/2*d - [Grünbaumian]
x3x3/2x5x5/4*a5*c *b5/2*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3/2o3/2o5o5*a5/4*c *b5/2*d (µ=548) o3o3o5/4o5/4*a5/4*c *b5/2*d (µ=1508) o3/2o3/2o5/4o5/4*a5/4*c *b5/3*d (µ=3532)
quasiregulars
x3/2o3/2o5o5*a5/4*c *b5/2*d - (contains "2gad")
o3/2x3/2o5o5*a5/4*c *b5/2*d - (contains "2gike")
o3/2o3/2o5x5*a5/4*c *b5/2*d - (contains "2gad")
x3o3o5/4o5/4*a5/4*c *b5/2*d - (contains "2gad")
o3x3o5/4o5/4*a5/4*c *b5/2*d - (contains "2gike")
o3o3o5/4x5/4*a5/4*c *b5/2*d - (contains "2gad")
x3/2o3/2o5/4o5/4*a5/4*c *b5/3*d - (contains "2gad")
o3/2x3/2o5/4o5/4*a5/4*c *b5/3*d - (contains "2gike")
o3/2o3/2o5/4x5/4*a5/4*c *b5/3*d - (contains "2gad")
other
Wythoffians
x3/2x3/2o5o5*a5/4*c *b5/2*d - [Grünbaumian]
x3/2o3/2x5o5*a5/4*c *b5/2*d - [Grünbaumian]
x3/2o3/2o5x5*a5/4*c *b5/2*d - 
o3/2x3/2o5x5*a5/4*c *b5/2*d - [Grünbaumian]
x3/2x3/2x5o5*a5/4*c *b5/2*d - [Grünbaumian]
x3/2x3/2o5x5*a5/4*c *b5/2*d - [Grünbaumian]
x3/2o3/2x5x5*a5/4*c *b5/2*d - [Grünbaumian]
x3/2x3/2x5x5*a5/4*c *b5/2*d - [Grünbaumian]
x3x3o5/4o5/4*a5/4*c *b5/2*d - 
x3o3x5/4o5/4*a5/4*c *b5/2*d - [Grünbaumian]
x3o3o5/4x5/4*a5/4*c *b5/2*d - [Grünbaumian]
o3x3o5/4x5/4*a5/4*c *b5/2*d - [Grünbaumian]
x3x3x5/4o5/4*a5/4*c *b5/2*d - [Grünbaumian]
x3x3o5/4x5/4*a5/4*c *b5/2*d - [Grünbaumian]
x3o3x5/4x5/4*a5/4*c *b5/2*d - [Grünbaumian]
x3x3x5/4x5/4*a5/4*c *b5/2*d - [Grünbaumian]
x3/2x3/2o5/4o5/4*a5/4*c *b5/3*d - [Grünbaumian]
x3/2o3/2x5/4o5/4*a5/4*c *b5/3*d - [Grünbaumian]
x3/2o3/2o5/4x5/4*a5/4*c *b5/3*d - [Grünbaumian]
o3/2x3/2o5/4x5/4*a5/4*c *b5/3*d - 
x3/2x3/2x5/4o5/4*a5/4*c *b5/3*d - [Grünbaumian]
x3/2x3/2o5/4x5/4*a5/4*c *b5/3*d - [Grünbaumian]
x3/2o3/2x5/4x5/4*a5/4*c *b5/3*d - [Grünbaumian]
x3/2x3/2x5/4x5/4*a5/4*c *b5/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o3o5/3o5/3*a5/2*c *b5*d   (up)

  o3o3o5/3o5/3*a5/2*c *b5*d (µ=28) o3o3o5/2o5/2*a5/2*c *b5/4*d (µ=212) o3o3/2o5/2o5/3*a5/3*c *b5*d (µ=452)
quasiregulars
x3o3o5/3o5/3*a5/2*c *b5*d - (contains "2sissid")
o3x3o5/3o5/3*a5/2*c *b5*d - (contains "2ike")
o3o3o5/3x5/3*a5/2*c *b5*d - (contains "2sissid")
x3o3o5/2o5/2*a5/2*c *b5/4*d - (contains "2sissid")
o3x3o5/2o5/2*a5/2*c *b5/4*d - (contains "2ike")
o3o3o5/2x5/2*a5/2*c *b5/4*d - (contains "2sissid")
x3o3/2o5/2o5/3*a5/3*c *b5*d - (contains "2sissid")
o3x3/2o5/2o5/3*a5/3*c *b5*d - (contains "2ike")
o3o3/2x5/2o5/3*a5/3*c *b5*d - (contains "2sissid")
o3o3/2o5/2x5/3*a5/3*c *b5*d - (contains "2sissid")
other
Wythoffians
x3x3o5/3o5/3*a5/2*c *b5*d - 
x3o3x5/3o5/3*a5/2*c *b5*d - [Grünbaumian]
x3o3o5/3x5/3*a5/2*c *b5*d - 
o3x3o5/3x5/3*a5/2*c *b5*d - 
x3x3x5/3o5/3*a5/2*c *b5*d - [Grünbaumian]
x3x3o5/3x5/3*a5/2*c *b5*d - 
x3o3x5/3x5/3*a5/2*c *b5*d - [Grünbaumian]
x3x3x5/3x5/3*a5/2*c *b5*d - [Grünbaumian]
x3x3o5/2o5/2*a5/2*c *b5/4*d - 
x3o3x5/2o5/2*a5/2*c *b5/4*d - [Grünbaumian]
x3o3o5/2x5/2*a5/2*c *b5/4*d - [Grünbaumian]
o3x3o5/2x5/2*a5/2*c *b5/4*d - [Grünbaumian]
x3x3x5/2o5/2*a5/2*c *b5/4*d - [Grünbaumian]
x3x3o5/2x5/2*a5/2*c *b5/4*d - [Grünbaumian]
x3o3x5/2x5/2*a5/2*c *b5/4*d - [Grünbaumian]
x3x3x5/2x5/2*a5/2*c *b5/4*d - [Grünbaumian]
x3x3/2o5/2o5/3*a5/3*c *b5*d - 
x3o3/2x5/2o5/3*a5/3*c *b5*d - 
x3o3/2o5/2x5/3*a5/3*c *b5*d - 
o3x3/2x5/2o5/3*a5/3*c *b5*d - [Grünbaumian]
o3x3/2o5/2x5/3*a5/3*c *b5*d - 
o3o3/2x5/2x5/3*a5/3*c *b5*d - [Grünbaumian]
x3x3/2x5/2o5/3*a5/3*c *b5*d - [Grünbaumian]
x3x3/2o5/2x5/3*a5/3*c *b5*d - 
x3o3/2x5/2x5/3*a5/3*c *b5*d - [Grünbaumian]
o3x3/2x5/2x5/3*a5/3*c *b5*d - [Grünbaumian]
x3x3/2x5/2x5/3*a5/3*c *b5*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3/2o3/2o5/2o5/2*a5/2*c *b5*d (µ=508) o3o3/2o5/3o5/2*a5/3*c *b5/4*d (µ=1708) o3/2o3/2o5/3o5/3*a5/2*c *b5/4*d (µ=2132)
quasiregulars
x3/2o3/2o5/2o5/2*a5/2*c *b5*d - (contains "2sissid")
o3/2x3/2o5/2o5/2*a5/2*c *b5*d - (contains "2ike")
o3/2o3/2o5/2x5/2*a5/2*c *b5*d - (contains "2sissid")
x3o3/2o5/3o5/2*a5/3*c *b5/4*d - (contains "2sissid")
o3x3/2o5/3o5/2*a5/3*c *b5/4*d - (contains "2ike")
o3o3/2x5/3o5/2*a5/3*c *b5/4*d - (contains "2sissid")
o3o3/2o5/3x5/2*a5/3*c *b5/4*d - (contains "2sissid")
x3/2o3/2o5/3o5/3*a5/2*c *b5/4*d - (contains "2sissid")
o3/2x3/2o5/3o5/3*a5/2*c *b5/4*d - (contains "2ike")
o3/2o3/2o5/3x5/3*a5/2*c *b5/4*d - (contains "2sissid")
other
Wythoffians
x3/2x3/2o5/2o5/2*a5/2*c *b5*d - [Grünbaumian]
x3/2o3/2x5/2o5/2*a5/2*c *b5*d - [Grünbaumian]
x3/2o3/2o5/2x5/2*a5/2*c *b5*d - [Grünbaumian]
o3/2x3/2o5/2x5/2*a5/2*c *b5*d - 
x3/2x3/2x5/2o5/2*a5/2*c *b5*d - [Grünbaumian]
x3/2x3/2o5/2x5/2*a5/2*c *b5*d - [Grünbaumian]
x3/2o3/2x5/2x5/2*a5/2*c *b5*d - [Grünbaumian]
x3/2x3/2x5/2x5/2*a5/2*c *b5*d - [Grünbaumian]
x3x3/2o5/3o5/2*a5/3*c *b5/4*d - 
x3o3/2x5/3o5/2*a5/3*c *b5/4*d - 
x3o3/2o5/3x5/2*a5/3*c *b5/4*d - [Grünbaumian]
o3x3/2x5/3o5/2*a5/3*c *b5/4*d - [Grünbaumian]
o3x3/2o5/3x5/2*a5/3*c *b5/4*d - [Grünbaumian]
o3o3/2x5/3x5/2*a5/3*c *b5/4*d - 
x3x3/2x5/3o5/2*a5/3*c *b5/4*d - [Grünbaumian]
x3x3/2o5/3x5/2*a5/3*c *b5/4*d - [Grünbaumian]
x3o3/2x5/3x5/2*a5/3*c *b5/4*d - [Grünbaumian]
o3x3/2x5/3x5/2*a5/3*c *b5/4*d - [Grünbaumian]
x3x3/2x5/3x5/2*a5/3*c *b5/4*d - [Grünbaumian]
x3/2x3/2o5/3o5/3*a5/2*c *b5/4*d - [Grünbaumian]
x3/2o3/2x5/3o5/3*a5/2*c *b5/4*d - [Grünbaumian]
x3/2o3/2o5/3x5/3*a5/2*c *b5/4*d - 
o3/2x3/2o5/3x5/3*a5/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2x5/3o5/3*a5/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2o5/3x5/3*a5/2*c *b5/4*d - [Grünbaumian]
x3/2o3/2x5/3x5/3*a5/2*c *b5/4*d - [Grünbaumian]
x3/2x3/2x5/3x5/3*a5/2*c *b5/4*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3/2o5o3/2o5*a5/2*c *b5*d   (up)

  o3/2o5o3/2o5*a5/2*c *b5*d (µ=32) o3o5o3/2o5/4*a5/3*c *b5*d (µ=208) o3o5o3o5*a5/3*c *b5/4*d (µ=272)
quasiregulars
x3/2o5o3/2o5*a5/2*c *b5*d - (contains gacid)
o3/2x5o3/2o5*a5/2*c *b5*d - (contains "2doe")
x3o5o3/2o5/4*a5/3*c *b5*d - (contains gacid)
o3x5o3/2o5/4*a5/3*c *b5*d - (contains "2doe")
o3o5x3/2o5/4*a5/3*c *b5*d - (contains gacid)
o3o5o3/2x5/4*a5/3*c *b5*d - (contains "2doe")
x3o5o3o5*a5/3*c *b5/4*d - (contains gacid)
o3x5o3o5*a5/3*c *b5/4*d - (contains "2doe")
other
Wythoffians
x3/2x5o3/2o5*a5/2*c *b5*d - [Grünbaumian]
x3/2o5x3/2o5*a5/2*c *b5*d - [Grünbaumian]
x3/2o5o3/2x5*a5/2*c *b5*d - 
o3/2x5o3/2x5*a5/2*c *b5*d - 
x3/2x5x3/2o5*a5/2*c *b5*d - [Grünbaumian]
x3/2x5o3/2x5*a5/2*c *b5*d - [Grünbaumian]
x3/2x5x3/2x5*a5/2*c *b5*d - [Grünbaumian]
x3x5o3/2o5/4*a5/3*c *b5*d - 
x3o5x3/2o5/4*a5/3*c *b5*d - 
x3o5o3/2x5/4*a5/3*c *b5*d - [Grünbaumian]
o3x5x3/2o5/4*a5/3*c *b5*d - 
o3x5o3/2x5/4*a5/3*c *b5*d - 
o3o5x3/2x5/4*a5/3*c *b5*d - [Grünbaumian]
x3x5x3/2o5/4*a5/3*c *b5*d - 
x3x5o3/2x5/4*a5/3*c *b5*d - [Grünbaumian]
x3o5x3/2x5/4*a5/3*c *b5*d - [Grünbaumian]
o3x5x3/2x5/4*a5/3*c *b5*d - [Grünbaumian]
x3x5x3/2x5/4*a5/3*c *b5*d - [Grünbaumian]
x3x5o3o5*a5/3*c *b5/4*d - 
x3o5x3o5*a5/3*c *b5/4*d - 
x3o5o3x5*a5/3*c *b5/4*d - 
o3x5o3x5*a5/3*c *b5/4*d - [Grünbaumian]
x3x5x3o5*a5/3*c *b5/4*d - 
x3x5o3x5*a5/3*c *b5/4*d - [Grünbaumian]
x3x5x3x5*a5/3*c *b5/4*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o5/4o3/2o5*a5/2*c *b5/4*d (µ=928) o3o5/4o3o5/4*a5/2*c *b5*d (µ=992) o3/2o5/4o3/2o5/4*a5/3*c *b5/4*d (µ=3632)
quasiregulars
x3o5/4o3/2o5*a5/2*c *b5/4*d - (contains gacid)
o3x5/4o3/2o5*a5/2*c *b5/4*d - (contains "2doe")
o3o5/4x3/2o5*a5/2*c *b5/4*d - (contains gacid)
o3o5/4o3/2x5*a5/2*c *b5/4*d - (contains "2doe")
x3o5/4o3o5/4*a5/2*c *b5*d - (contains gacid)
o3x5/4o3o5/4*a5/2*c *b5*d - (contains "2doe")
x3/2o5/4o3/2o5/4*a5/3*c *b5/4*d - (contains gacid)
o3/2x5/4o3/2o5/4*a5/3*c *b5/4*d - (contains "2doe")
other
Wythoffians
x3x5/4o3/2o5*a5/2*c *b5/4*d - 
x3o5/4x3/2o5*a5/2*c *b5/4*d - [Grünbaumian]
x3o5/4o3/2x5*a5/2*c *b5/4*d - 
o3x5/4x3/2o5*a5/2*c *b5/4*d - [Grünbaumian]
o3x5/4o3/2x5*a5/2*c *b5/4*d - [Grünbaumian]
o3o5/4x3/2x5*a5/2*c *b5/4*d - [Grünbaumian]
x3x5/4x3/2o5*a5/2*c *b5/4*d - [Grünbaumian]
x3x5/4o3/2x5*a5/2*c *b5/4*d - [Grünbaumian]
x3o5/4x3/2x5*a5/2*c *b5/4*d - [Grünbaumian]
o3x5/4x3/2x5*a5/2*c *b5/4*d - [Grünbaumian]
x3x5/4x3/2x5*a5/2*c *b5/4*d - [Grünbaumian]
x3x5/4o3o5/4*a5/2*c *b5*d - 
x3o5/4x3o5/4*a5/2*c *b5*d - [Grünbaumian]
x3o5/4o3x5/4*a5/2*c *b5*d - [Grünbaumian]
o3x5/4o3x5/4*a5/2*c *b5*d - 
x3x5/4x3o5/4*a5/2*c *b5*d - [Grünbaumian]
x3x5/4o3x5/4*a5/2*c *b5*d - [Grünbaumian]
x3x5/4x3x5/4*a5/2*c *b5*d - [Grünbaumian]
x3/2x5/4o3/2o5/4*a5/3*c *b5/4*d - [Grünbaumian]
x3/2o5/4x3/2o5/4*a5/3*c *b5/4*d - 
x3/2o5/4o3/2x5/4*a5/3*c *b5/4*d - [Grünbaumian]
o3/2x5/4o3/2x5/4*a5/3*c *b5/4*d - [Grünbaumian]
x3/2x5/4x3/2o5/4*a5/3*c *b5/4*d - [Grünbaumian]
x3/2x5/4o3/2x5/4*a5/3*c *b5/4*d - [Grünbaumian]
x3/2x5/4x3/2x5/4*a5/3*c *b5/4*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o3o5/3o3o5/3*a5*c *b5/2*d   (up)

  o3o5/3o3o5/3*a5*c *b5/2*d (µ=112) o3o5/3o3/2o5/2*a5*c *b5/3*d (µ=368) o3/2o5/2o3/2o5/2*a5*c *b5/2*d (µ=592)
quasiregulars
x3o5/3o3o5/3*a5*c *b5/2*d - (contains cid)
o3x5/3o3o5/3*a5*c *b5/2*d - (contains "2gissid")
x3o5/3o3/2o5/2*a5*c *b5/3*d - (contains cid)
o3x5/3o3/2o5/2*a5*c *b5/3*d - (contains "2gissid")
o3o5/3x3/2o5/2*a5*c *b5/3*d - (contains cid)
o3o5/3o3/2x5/2*a5*c *b5/3*d - (contains "2gissid")
x3/2o5/2o3/2o5/2*a5*c *b5/2*d - (contains cid)
o3/2x5/2o3/2o5/2*a5*c *b5/2*d - (contains "2gissid")
other
Wythoffians
x3x5/3o3o5/3*a5*c *b5/2*d - 
x3o5/3x3o5/3*a5*c *b5/2*d - 
x3o5/3o3x5/3*a5*c *b5/2*d - 
o3x5/3o3x5/3*a5*c *b5/2*d - [Grünbaumian]
x3x5/3x3o5/3*a5*c *b5/2*d - 
x3x5/3o3x5/3*a5*c *b5/2*d - [Grünbaumian]
x3x5/3x3x5/3*a5*c *b5/2*d - [Grünbaumian]
x3x5/3o3/2o5/2*a5*c *b5/3*d - 
x3o5/3x3/2o5/2*a5*c *b5/3*d - 
x3o5/3o3/2x5/2*a5*c *b5/3*d - [Grünbaumian]
o3x5/3x3/2o5/2*a5*c *b5/3*d - 
o3x5/3o3/2x5/2*a5*c *b5/3*d - 
o3o5/3x3/2x5/2*a5*c *b5/3*d - [Grünbaumian]
x3x5/3x3/2o5/2*a5*c *b5/3*d - 
x3x5/3o3/2x5/2*a5*c *b5/3*d - [Grünbaumian]
x3o5/3x3/2x5/2*a5*c *b5/3*d - [Grünbaumian]
o3x5/3x3/2x5/2*a5*c *b5/3*d - [Grünbaumian]
x3x5/3x3/2x5/2*a5*c *b5/3*d - [Grünbaumian]
x3/2x5/2o3/2o5/2*a5*c *b5/2*d - [Grünbaumian]
x3/2o5/2x3/2o5/2*a5*c *b5/2*d - 
x3/2o5/2o3/2x5/2*a5*c *b5/2*d - [Grünbaumian]
o3/2x5/2o3/2x5/2*a5*c *b5/2*d - [Grünbaumian]
x3/2x5/2x3/2o5/2*a5*c *b5/2*d - [Grünbaumian]
x3/2x5/2o3/2x5/2*a5*c *b5/2*d - [Grünbaumian]
x3/2x5/2x3/2x5/2*a5*c *b5/2*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o3o5/2o3o5/2*a5/4*c *b5/3*d (µ=832) o3o5/2o3/2o5/3*a5/4*c *b5/2*d (µ=1088) o3/2o5/3o3/2o5/3*a5/4*c *b5/3*d (µ=2752)
quasiregulars
x3o5/2o3o5/2*a5/4*c *b5/3*d - (contains cid)
o3x5/2o3o5/2*a5/4*c *b5/3*d - (contains "2gissid")
x3o5/2o3/2o5/3*a5/4*c *b5/2*d - (contains cid)
o3x5/2o3/2o5/3*a5/4*c *b5/2*d - (contains "2gissid")
o3o5/2x3/2o5/3*a5/4*c *b5/2*d - (contains cid)
o3o5/2o3/2x5/3*a5/4*c *b5/2*d - (contains "2gissid")
x3/2o5/3o3/2o5/3*a5/4*c *b5/3*d - (contains cid)
o3/2x5/3o3/2o5/3*a5/4*c *b5/3*d - (contains "2gissid")
other
Wythoffians
x3x5/2o3o5/2*a5/4*c *b5/3*d - 
x3o5/2x3o5/2*a5/4*c *b5/3*d - [Grünbaumian]
x3o5/2o3x5/2*a5/4*c *b5/3*d - [Grünbaumian]
o3x5/2o3x5/2*a5/4*c *b5/3*d - 
x3x5/2x3o5/2*a5/4*c *b5/3*d - [Grünbaumian]
x3o5/2x3x5/2*a5/4*c *b5/3*d - [Grünbaumian]
x3x5/2x3x5/2*a5/4*c *b5/3*d - [Grünbaumian]
x3x5/2o3/2o5/3*a5/4*c *b5/2*d - 
x3o5/2x3/2o5/3*a5/4*c *b5/2*d - [Grünbaumian]
x3o5/2o3/2x5/3*a5/4*c *b5/2*d - 
o3x5/2x3/2o5/3*a5/4*c *b5/2*d - [Grünbaumian]
o3x5/2o3/2x5/3*a5/4*c *b5/2*d - [Grünbaumian]
o3o5/2x3/2x5/3*a5/4*c *b5/2*d - [Grünbaumian]
x3x5/2x3/2o5/3*a5/4*c *b5/2*d - [Grünbaumian]
x3x5/2o3/2x5/3*a5/4*c *b5/2*d - [Grünbaumian]
x3o5/2x3/2x5/3*a5/4*c *b5/2*d - [Grünbaumian]
o3x5/2x3/2x5/3*a5/4*c *b5/2*d - [Grünbaumian]
x3x5/2x3/2x5/3*a5/4*c *b5/2*d - [Grünbaumian]
x3/2x5/3o3/2o5/3*a5/4*c *b5/3*d - [Grünbaumian]
x3/2o5/3x3/2o5/3*a5/4*c *b5/3*d - [Grünbaumian]
x3/2o5/3o3/2x5/3*a5/4*c *b5/3*d - 
o3/2x5/3o3/2x5/3*a5/4*c *b5/3*d - 
x3/2x5/3x3/2o5/3*a5/4*c *b5/3*d - [Grünbaumian]
x3/2x5/3o3/2x5/3*a5/4*c *b5/3*d - [Grünbaumian]
x3/2o5/3x3/2x5/3*a5/4*c *b5/3*d - [Grünbaumian]
x3/2x5/3x3/2x5/3*a5/4*c *b5/3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o5o5o5/3o5/3*a3/2*c *b3*d   (up)

  o5o5o5/3o5/3*a3/2*c *b3*d (µ=60) o5o5o5/2o5/2*a3/2*c *b3/2*d (µ=180) o5o5/4o5/2o5/3*a3*c *b3*d (µ=420)
quasiregulars
x5o5o5/3o5/3*a3/2*c *b3*d - 
o5x5o5/3o5/3*a3/2*c *b3*d - 
o5o5o5/3x5/3*a3/2*c *b3*d - 
x5o5o5/2o5/2*a3/2*c *b3/2*d - 
o5x5o5/2o5/2*a3/2*c *b3/2*d - 
o5o5o5/2x5/2*a3/2*c *b3/2*d - 
x5o5/4o5/2o5/3*a3*c *b3*d - 
o5x5/4o5/2o5/3*a3*c *b3*d - 
o5o5/4x5/2o5/3*a3*c *b3*d - 
o5o5/4o5/2x5/3*a3*c *b3*d - 
other
Wythoffians
x5x5o5/3o5/3*a3/2*c *b3*d - 
x5o5x5/3o5/3*a3/2*c *b3*d - [Grünbaumian]
x5o5o5/3x5/3*a3/2*c *b3*d - 
o5x5o5/3x5/3*a3/2*c *b3*d - 
x5x5x5/3o5/3*a3/2*c *b3*d - [Grünbaumian]
x5x5o5/3x5/3*a3/2*c *b3*d - kevuthi
x5o5x5/3x5/3*a3/2*c *b3*d - [Grünbaumian]
x5x5x5/3x5/3*a3/2*c *b3*d - [Grünbaumian]
x5x5o5/2o5/2*a3/2*c *b3/2*d - 
x5o5x5/2o5/2*a3/2*c *b3/2*d - [Grünbaumian]
x5o5o5/2x5/2*a3/2*c *b3/2*d - [Grünbaumian]
o5x5o5/2x5/2*a3/2*c *b3/2*d - [Grünbaumian]
x5x5x5/2o5/2*a3/2*c *b3/2*d - [Grünbaumian]
x5x5o5/2x5/2*a3/2*c *b3/2*d - [Grünbaumian]
x5o5x5/2x5/2*a3/2*c *b3/2*d - [Grünbaumian]
x5x5x5/2x5/2*a3/2*c *b3/2*d - [Grünbaumian]
x5x5/4o5/2o5/3*a3*c *b3*d - 
x5o5/4x5/2o5/3*a3*c *b3*d - 
x5o5/4o5/2x5/3*a3*c *b3*d - 
o5x5/4x5/2o5/3*a3*c *b3*d - [Grünbaumian]
o5x5/4o5/2x5/3*a3*c *b3*d - 
o5o5/4x5/2x5/3*a3*c *b3*d - [Grünbaumian]
x5x5/4x5/2o5/3*a3*c *b3*d - [Grünbaumian]
x5x5/4o5/2x5/3*a3*c *b3*d - 
x5o5/4x5/2x5/3*a3*c *b3*d - [Grünbaumian]
o5x5/4x5/2x5/3*a3*c *b3*d - [Grünbaumian]
x5x5/4x5/2x5/3*a3*c *b3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o5o5/4o5/3o5/2*a3*c *b3/2*d (µ=780) o5/4o5/4o5/2o5/2*a3/2*c *b3*d (µ=1500) o5/4o5/4o5/3o5/3*a3/2*c *b3/2*d (µ=3060)
quasiregulars
x5o5/4o5/3o5/2*a3*c *b3/2*d - 
o5x5/4o5/3o5/2*a3*c *b3/2*d - 
o5o5/4x5/3o5/2*a3*c *b3/2*d - 
o5o5/4o5/3x5/2*a3*c *b3/2*d - 
x5/4o5/4o5/2o5/2*a3/2*c *b3*d - 
o5/4x5/4o5/2o5/2*a3/2*c *b3*d - 
o5/4o5/4o5/2x5/2*a3/2*c *b3*d - 
x5/4o5/4o5/3o5/3*a3/2*c *b3/2*d - 
o5/4x5/4o5/3o5/3*a3/2*c *b3/2*d - 
o5/4o5/4o5/3x5/3*a3/2*c *b3/2*d - 
other
Wythoffians
x5x5/4o5/3o5/2*a3*c *b3/2*d - 
x5o5/4x5/3o5/2*a3*c *b3/2*d - 
x5o5/4o5/3x5/2*a3*c *b3/2*d - [Grünbaumian]
o5x5/4x5/3o5/2*a3*c *b3/2*d - [Grünbaumian]
o5x5/4o5/3x5/2*a3*c *b3/2*d - [Grünbaumian]
o5o5/4x5/3x5/2*a3*c *b3/2*d - 
x5x5/4x5/3o5/2*a3*c *b3/2*d - [Grünbaumian]
x5x5/4o5/3x5/2*a3*c *b3/2*d - [Grünbaumian]
x5o5/4x5/3x5/2*a3*c *b3/2*d - [Grünbaumian]
o5x5/4x5/3x5/2*a3*c *b3/2*d - [Grünbaumian]
x5x5/4x5/3x5/2*a3*c *b3/2*d - [Grünbaumian]
x5/4x5/4o5/2o5/2*a3/2*c *b3*d - [Grünbaumian]
x5/4o5/4x5/2o5/2*a3/2*c *b3*d - [Grünbaumian]
x5/4o5/4o5/2x5/2*a3/2*c *b3*d - [Grünbaumian]
o5/4x5/4o5/2x5/2*a3/2*c *b3*d - 
x5/4x5/4x5/2o5/2*a3/2*c *b3*d - [Grünbaumian]
x5/4x5/4o5/2x5/2*a3/2*c *b3*d - [Grünbaumian]
x5/4o5/4x5/2x5/2*a3/2*c *b3*d - [Grünbaumian]
x5/4x5/4x5/2x5/2*a3/2*c *b3*d - [Grünbaumian]
x5/4x5/4o5/3o5/3*a3/2*c *b3/2*d - [Grünbaumian]
x5/4o5/4x5/3o5/3*a3/2*c *b3/2*d - [Grünbaumian]
x5/4o5/4o5/3x5/3*a3/2*c *b3/2*d - 
o5/4x5/4o5/3x5/3*a3/2*c *b3/2*d - [Grünbaumian]
x5/4x5/4x5/3o5/3*a3/2*c *b3/2*d - [Grünbaumian]
x5/4x5/4o5/3x5/3*a3/2*c *b3/2*d - [Grünbaumian]
x5/4o5/4x5/3x5/3*a3/2*c *b3/2*d - [Grünbaumian]
x5/4x5/4x5/3x5/3*a3/2*c *b3/2*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o5o5o5o5*a5/4*c *b3/2*d   (up)

  o5o5o5o5*a5/4*c *b3/2*d (µ=16) o5o5/4o5/4o5*a5*c *b3/2*d (µ=224) o5o5/4o5o5/4*a5*c *b3*d (µ=496)
quasiregulars
x5o5o5o5*a5/4*c *b3/2*d - 
o5x5o5o5*a5/4*c *b3/2*d - 
x5o5/4o5/4o5*a5*c *b3/2*d - 
o5x5/4o5/4o5*a5*c *b3/2*d - 
o5o5/4x5/4o5*a5*c *b3/2*d - 
x5o5/4o5o5/4*a5*c *b3*d - 
o5x5/4o5o5/4*a5*c *b3*d - 
other
Wythoffians
x5x5o5o5*a5/4*c *b3/2*d - 
x5o5x5o5*a5/4*c *b3/2*d - [Grünbaumian]
o5x5o5x5*a5/4*c *b3/2*d - [Grünbaumian]
x5x5x5o5*a5/4*c *b3/2*d - [Grünbaumian]
x5x5o5x5*a5/4*c *b3/2*d - [Grünbaumian]
x5x5x5x5*a5/4*c *b3/2*d - [Grünbaumian]
x5x5/4o5/4o5*a5*c *b3/2*d - 
x5o5/4x5/4o5*a5*c *b3/2*d - 
o5x5/4x5/4o5*a5*c *b3/2*d - [Grünbaumian]
o5x5/4o5/4x5*a5*c *b3/2*d - [Grünbaumian]
x5x5/4x5/4o5*a5*c *b3/2*d - [Grünbaumian]
x5x5/4o5/4x5*a5*c *b3/2*d - [Grünbaumian]
o5x5/4x5/4x5*a5*c *b3/2*d - [Grünbaumian]
x5x5/4x5/4x5*a5*c *b3/2*d - [Grünbaumian]
x5x5/4o5o5/4*a5*c *b3*d - 
x5o5/4x5o5/4*a5*c *b3*d - 
x5o5/4o5x5/4*a5*c *b3*d - [Grünbaumian]
o5x5/4o5x5/4*a5*c *b3*d - 
x5x5/4x5o5/4*a5*c *b3*d - [Grünbaumian]
x5x5/4o5x5/4*a5*c *b3*d - [Grünbaumian]
x5x5/4x5x5/4*a5*c *b3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o5o5o5/4o5/4*a5/4*c *b3*d (µ=704) o5/4o5/4o5/4o5/4*a5/4*c *b3/2*d (µ=4336)  
quasiregulars
x5o5o5/4o5/4*a5/4*c *b3*d - 
o5x5o5/4o5/4*a5/4*c *b3*d - 
o5o5o5/4x5/4*a5/4*c *b3*d - 
x5/4o5/4o5/4o5/4*a5/4*c *b3/2*d - 
o5/4x5/4o5/4o5/4*a5/4*c *b3/2*d - 
 
other
Wythoffians
x5x5o5/4o5/4*a5/4*c *b3*d - 
x5o5x5/4o5/4*a5/4*c *b3*d - [Grünbaumian]
x5o5o5/4x5/4*a5/4*c *b3*d - [Grünbaumian]
o5x5o5/4x5/4*a5/4*c *b3*d - 
x5x5x5/4o5/4*a5/4*c *b3*d - [Grünbaumian]
x5x5o5/4x5/4*a5/4*c *b3*d - [Grünbaumian]
x5o5x5/4x5/4*a5/4*c *b3*d - [Grünbaumian]
x5x5x5/4x5/4*a5/4*c *b3*d - [Grünbaumian]
x5/4x5/4o5/4o5/4*a5/4*c *b3/2*d - [Grünbaumian]
x5/4o5/4x5/4o5/4*a5/4*c *b3/2*d - [Grünbaumian]
o5/4x5/4o5/4x5/4*a5/4*c *b3/2*d - [Grünbaumian]
x5/4x5/4x5/4o5/4*a5/4*c *b3/2*d - [Grünbaumian]
x5/4x5/4o5/4x5/4*a5/4*c *b3/2*d - [Grünbaumian]
x5/4x5/4x5/4x5/4*a5/4*c *b3/2*d - [Grünbaumian]
 
(partial)
snubs and
holosnubs
...
...
 


Hecatonicosachoral ("hyic") Symmetries – type o5/2o5/2o5/2o5/2*a5/2*c *b3/2*d   (up)

  o5/2o5/2o5/2o5/2*a5/2*c *b3/2*d (µ=304) o5/2o5/2o5/3o5/3*a5/2*c *b3*d (µ=416) o5/2o5/3o5/2o5/3*a5/3*c *b3*d (µ=784)
quasiregulars
x5/2o5/2o5/2o5/2*a5/2*c *b3/2*d - 
o5/2x5/2o5/2o5/2*a5/2*c *b3/2*d - 
x5/2o5/2o5/3o5/3*a5/2*c *b3*d - 
o5/2x5/2o5/3o5/3*a5/2*c *b3*d - 
o5/2o5/2o5/3x5/3*a5/2*c *b3*d - 
x5/2o5/3o5/2o5/3*a5/3*c *b3*d - 
o5/2x5/3o5/2o5/3*a5/3*c *b3*d - 
other
Wythoffians
x5/2x5/2o5/2o5/2*a5/2*c *b3/2*d - [Grünbaumian]
x5/2o5/2x5/2o5/2*a5/2*c *b3/2*d - [Grünbaumian]
o5/2x5/2o5/2x5/2*a5/2*c *b3/2*d - [Grünbaumian]
x5/2x5/2x5/2o5/2*a5/2*c *b3/2*d - [Grünbaumian]
x5/2x5/2o5/2x5/2*a5/2*c *b3/2*d - [Grünbaumian]
x5/2x5/2x5/2x5/2*a5/2*c *b3/2*d - [Grünbaumian]
x5/2x5/2o5/3o5/3*a5/2*c *b3*d - [Grünbaumian]
x5/2o5/2x5/3o5/3*a5/2*c *b3*d - [Grünbaumian]
x5/2o5/2o5/3x5/3*a5/2*c *b3*d - 
o5/2x5/2o5/3x5/3*a5/2*c *b3*d - 
x5/2x5/2x5/3o5/3*a5/2*c *b3*d - [Grünbaumian]
x5/2x5/2o5/3x5/3*a5/2*c *b3*d - [Grünbaumian]
x5/2o5/2x5/3x5/3*a5/2*c *b3*d - [Grünbaumian]
x5/2x5/2x5/3x5/3*a5/2*c *b3*d - [Grünbaumian]
x5/2x5/3o5/2o5/3*a5/3*c *b3*d - [Grünbaumian]
x5/2o5/3x5/2o5/3*a5/3*c *b3*d - 
x5/2o5/3o5/2x5/3*a5/3*c *b3*d - 
o5/2x5/3o5/2x5/3*a5/3*c *b3*d - 
x5/2x5/3x5/2o5/3*a5/3*c *b3*d - [Grünbaumian]
x5/2x5/3o5/2x5/3*a5/3*c *b3*d - [Grünbaumian]
x5/2x5/3x5/2x5/3*a5/3*c *b3*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...
  o5/2o5/3o5/3o5/2*a5/3*c *b3/2*d (µ=1376) o5/3o5/3o5/3o5/3*a5/2*c *b3/2*d (µ=1744)  
quasiregulars
x5/2o5/3o5/3o5/2*a5/3*c *b3/2*d - 
o5/2x5/3o5/3o5/2*a5/3*c *b3/2*d - 
o5/2o5/3x5/3o5/2*a5/3*c *b3/2*d - 
x5/3o5/3o5/3o5/3*a5/2*c *b3/2*d - 
o5/3x5/3o5/3o5/3*a5/2*c *b3/2*d - 
 
other
Wythoffians
x5/2x5/3o5/3o5/2*a5/3*c *b3/2*d - [Grünbaumian]
x5/2o5/3x5/3o5/2*a5/3*c *b3/2*d - 
o5/2x5/3x5/3o5/2*a5/3*c *b3/2*d - 
o5/2x5/3o5/3x5/2*a5/3*c *b3/2*d - [Grünbaumian]
x5/2x5/3x5/3o5/2*a5/3*c *b3/2*d - [Grünbaumian]
x5/2x5/3o5/3x5/2*a5/3*c *b3/2*d - [Grünbaumian]
o5/2x5/3x5/3x5/2*a5/3*c *b3/2*d - [Grünbaumian]
x5/2x5/3x5/3x5/2*a5/3*c *b3/2*d - [Grünbaumian]
x5/3x5/3o5/3o5/3*a5/2*c *b3/2*d - 
x5/3o5/3x5/3o5/3*a5/2*c *b3/2*d - [Grünbaumian]
o5/3x5/3o5/3x5/3*a5/2*c *b3/2*d - [Grünbaumian]
x5/3x5/3x5/3o5/3*a5/2*c *b3/2*d - [Grünbaumian]
x5/3x5/3o5/3x5/3*a5/2*c *b3/2*d - [Grünbaumian]
x5/3x5/3x5/3x5/3*a5/2*c *b3/2*d - [Grünbaumian]
 
(partial)
snubs and
holosnubs
...
...
 


Hecatonicosachoral ("hyic") Symmetries – type o5o5o5o5*a5/4*c *b5/4*d   (up)

  o5o5o5o5*a5/4*c *b5/4*d (µ=264) o5o5o5/4o5/4*a5/4*c *b5*d (µ=456) o5/4o5/4o5/4o5/4*a5/4*c *b5/4*d (µ=4584)
quasiregulars
x5o5o5o5*a5/4*c *b5/4*d - 
x5o5o5/4o5/4*a5/4*c *b5*d - 
o5x5o5/4o5/4*a5/4*c *b5*d - 
x5/4o5/4o5/4o5/4*a5/4*c *b5/4*d - 
other
Wythoffians
x5x5o5o5*a5/4*c *b5/4*d - 
x5o5x5o5*a5/4*c *b5/4*d - [Grünbaumian]
x5x5x5o5*a5/4*c *b5/4*d - [Grünbaumian]
x5x5x5x5*a5/4*c *b5/4*d - [Grünbaumian]
x5x5o5/4o5/4*a5/4*c *b5*d - 
x5o5x5/4o5/4*a5/4*c *b5*d - [Grünbaumian]
x5x5x5/4o5/4*a5/4*c *b5*d - [Grünbaumian]
x5o5x5/4x5/4*a5/4*c *b5*d - [Grünbaumian]
x5x5x5/4x5/4*a5/4*c *b5*d - [Grünbaumian]
x5/4x5/4o5/4o5/4*a5/4*c *b5/4*d - [Grünbaumian]
x5/4x5/4x5/4o5/4*a5/4*c *b5/4*d - [Grünbaumian]
x5/4x5/4x5/4x5/4*a5/4*c *b5/4*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


Hecatonicosachoral ("hyic") Symmetries – type o5/2o5/2o5/2o5/2*a5/2*c *b5/2*d   (up)

  o5/2o5/2o5/2o5/2*a5/2*c *b5/2*d (µ=24) o5/2o5/2o5/3o5/3*a5/2*c *b5/3*d (µ=696) o5/3o5/3o5/3o5/3*a5/2*c *b5/2*d (µ=1464)
quasiregulars
x5/2o5/2o5/2o5/2*a5/2*c *b5/2*d - "6sishi"
x5/2o5/2o5/3o5/3*a5/2*c *b5/3*d - 
o5/2o5/2o5/3x5/3*a5/2*c *b5/3*d - "6sishi"
x5/3o5/3o5/3o5/3*a5/2*c *b5/2*d - 
other
Wythoffians
x5/2x5/2o5/2o5/2*a5/2*c *b5/2*d - [Grünbaumian]
x5/2x5/2x5/2o5/2*a5/2*c *b5/2*d - [Grünbaumian]
x5/2x5/2x5/2x5/2*a5/2*c *b5/2*d - [Grünbaumian]
x5/2x5/2o5/3o5/3*a5/2*c *b5/3*d - [Grünbaumian]
x5/2o5/2o5/3x5/3*a5/2*c *b5/3*d - 
x5/2x5/2x5/3o5/3*a5/2*c *b5/3*d - [Grünbaumian]
x5/2x5/2o5/3x5/3*a5/2*c *b5/3*d - [Grünbaumian]
x5/2x5/2x5/3x5/3*a5/2*c *b5/3*d - [Grünbaumian]
x5/3x5/3o5/3o5/3*a5/2*c *b5/2*d - 
x5/3o5/3x5/3o5/3*a5/2*c *b5/2*d - [Grünbaumian]
x5/3x5/3x5/3o5/3*a5/2*c *b5/2*d - [Grünbaumian]
x5/3x5/3x5/3x5/3*a5/2*c *b5/2*d - [Grünbaumian]
(partial)
snubs and
holosnubs
...
...
...


© 2004-2024
top of page