Acronym getit thix Name great tritrigonal trishecatonicosihexacosachoron Circumradius sqrt[8-3 sqrt(5)] = 1.136572 Colonel of regiment getit xethi Externallinks

As abstract polytope getit thix is isomorphic to stut thix, thereby interchanging the roles of pentagrams and pentagons, resp. replacing the giid by siid and tiggy by ti.

Incidence matrix according to Dynkin symbol

```x3x3o3o5/2*a5/4*c

. . . .           | 2400 |    6    3 |    6    3    3    3 |   3   3   1   1
------------------+------+-----------+---------------------+----------------
x . . .           |    2 | 7200    * |    1    1    1    0 |   1   1   1   0
. x . .           |    2 |    * 3600 |    2    0    0    2 |   2   1   0   1
------------------+------+-----------+---------------------+----------------
x3x . .           |    6 |    3    3 | 2400    *    *    * |   1   1   0   0
x . o .   *a5/4*c |    5 |    5    0 |    * 1440    *    * |   1   0   1   0
x . . o5/2*a      |    5 |    5    0 |    *    * 1440    * |   0   1   1   0
. x3o .           |    3 |    0    3 |    *    *    * 2400 |   1   0   0   1
------------------+------+-----------+---------------------+----------------
x3x3o .   *a5/4*c ♦   60 |   60   60 |   20   12    0   20 | 120   *   *   *
x3x . o5/2*a      ♦   60 |   60   30 |   20    0   12    0 |   * 120   *   *
x . o3o5/2*a5/4*c ♦   20 |   60    0 |    0   12   12    0 |   *   * 120   *
. x3o3o           ♦    4 |    0    6 |    0    0    0    4 |   *   *   * 600
```

```x3x3o3/2o5/3*a5/4*c

. . .   .           | 2400 |    6    3 |    6    3    3    3 |   3   3   1   1
--------------------+------+-----------+---------------------+----------------
x . .   .           |    2 | 7200    * |    1    1    1    0 |   1   1   1   0
. x .   .           |    2 |    * 3600 |    2    0    0    2 |   2   1   0   1
--------------------+------+-----------+---------------------+----------------
x3x .   .           |    6 |    3    3 | 2400    *    *    * |   1   1   0   0
x . o   .   *a5/4*c |    5 |    5    0 |    * 1440    *    * |   1   0   1   0
x . .   o5/3*a      |    5 |    5    0 |    *    * 1440    * |   0   1   1   0
. x3o   .           |    3 |    0    3 |    *    *    * 2400 |   1   0   0   1
--------------------+------+-----------+---------------------+----------------
x3x3o   .   *a5/4*c ♦   60 |   60   60 |   20   12    0   20 | 120   *   *   *
x3x .   o5/3*a      ♦   60 |   60   30 |   20    0   12    0 |   * 120   *   *
x . o3/2o5/3*a5/4*c ♦   20 |   60    0 |    0   12   12    0 |   *   * 120   *
. x3o3/2o           ♦    4 |    0    6 |    0    0    0    4 |   *   *   * 600
```

```x3x3/2o3o5/3*a5*c

. .   . .         | 2400 |    6    3 |    6    3    3    3 |   3   3   1   1
------------------+------+-----------+---------------------+----------------
x .   . .         |    2 | 7200    * |    1    1    1    0 |   1   1   1   0
. x   . .         |    2 |    * 3600 |    2    0    0    2 |   2   1   0   1
------------------+------+-----------+---------------------+----------------
x3x   . .         |    6 |    3    3 | 2400    *    *    * |   1   1   0   0
x .   o .   *a5*c |    5 |    5    0 |    * 1440    *    * |   1   0   1   0
x .   . o5/3*a    |    5 |    5    0 |    *    * 1440    * |   0   1   1   0
. x3/2o .         |    3 |    0    3 |    *    *    * 2400 |   1   0   0   1
------------------+------+-----------+---------------------+----------------
x3x3/2o .   *a5*c ♦   60 |   60   60 |   20   12    0   20 | 120   *   *   *
x3x   . o5/3*a    ♦   60 |   60   30 |   20    0   12    0 |   * 120   *   *
x .   o3o5/3*a5*c ♦   20 |   60    0 |    0   12   12    0 |   *   * 120   *
. x3/2o3o         ♦    4 |    0    6 |    0    0    0    4 |   *   *   * 600
```

```x3x3/2o3/2o5/2*a5*c

. .   .   .         | 2400 |    6    3 |    6    3    3    3 |   3   3   1   1
--------------------+------+-----------+---------------------+----------------
x .   .   .         |    2 | 7200    * |    1    1    1    0 |   1   1   1   0
. x   .   .         |    2 |    * 3600 |    2    0    0    2 |   2   1   0   1
--------------------+------+-----------+---------------------+----------------
x3x   .   .         |    6 |    3    3 | 2400    *    *    * |   1   1   0   0
x .   o   .   *a5*c |    5 |    5    0 |    * 1440    *    * |   1   0   1   0
x .   .   o5/2*a    |    5 |    5    0 |    *    * 1440    * |   0   1   1   0
. x3/2o   .         |    3 |    0    3 |    *    *    * 2400 |   1   0   0   1
--------------------+------+-----------+---------------------+----------------
x3x3/2o   .   *a5*c ♦   60 |   60   60 |   20   12    0   20 | 120   *   *   *
x3x   .   o5/2*a    ♦   60 |   60   30 |   20    0   12    0 |   * 120   *   *
x .   o3/2o5/2*a5*c ♦   20 |   60    0 |    0   12   12    0 |   *   * 120   *
. x3/2o3/2o         ♦    4 |    0    6 |    0    0    0    4 |   *   *   * 600
```