Acronym gik vixathi
Name great skewverted hexacositriakishecatonicosachoro
Circumradius sqrt[13-4 sqrt(5)] = 2.013884
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: co dip gaddid gaquatid qrid sidditdid siid
gikkiv datapixady 600720001201200
gik vixathi 600012012000120
& others)
External
links
hedrondude   WikiChoron  

As abstract polytope gik vixathi is isomorphic to sik vixathi, thereby replacing pentagrams by pentagons and decagrams by decagons, respectively siid by giid, gaddid by saddid, and gaquatid by grid.


Incidence matrix according to Dynkin symbol

o3x3x5/3x3*a5/2*c

. . .   .         | 7200 |    2    2    2 |    1    1    1    2    2    2 |   1   1   1   2
------------------+------+----------------+-------------------------------+----------------
. x .   .         |    2 | 7200    *    * |    1    0    0    1    1    0 |   1   1   0   1
. . x   .         |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
. . .   x         |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
------------------+------+----------------+-------------------------------+----------------
o3x .   .         |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
o . x   . *a5/2*c |    5 |    0    5    0 |    * 1440    *    *    *    * |   1   0   1   0
o . .   x3*a      |    3 |    0    0    3 |    *    * 2400    *    *    * |   0   1   1   0
. x3x   .         |    6 |    3    3    0 |    *    *    * 2400    *    * |   1   0   0   1
. x .   x         |    4 |    2    0    2 |    *    *    *    * 3600    * |   0   1   0   1
. . x5/3x         |   10 |    0    5    5 |    *    *    *    *    * 1440 |   0   0   1   1
------------------+------+----------------+-------------------------------+----------------
o3x3x   . *a5/2*c    60 |   60   60    0 |   20   12    0   20    0    0 | 120   *   *   *
o3x .   x3*a         12 |   12    0   12 |    4    0    4    0    6    0 |   * 600   *   *
o . x5/3x3*a5/2*c    60 |    0   60   60 |    0   12   20    0    0   12 |   *   * 120   *
. x3x5/3x           120 |   60   60   60 |    0    0    0   20   30   12 |   *   *   * 120

o3/2x3x5/3x3/2*a5/3*c

.   . .   .           | 7200 |    2    2    2 |    1    1    1    2    2    2 |   1   1   1   2
----------------------+------+----------------+-------------------------------+----------------
.   x .   .           |    2 | 7200    *    * |    1    0    0    1    1    0 |   1   1   0   1
.   . x   .           |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
.   . .   x           |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
----------------------+------+----------------+-------------------------------+----------------
o3/2x .   .           |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
o   . x   .   *a5/3*c |    5 |    0    5    0 |    * 1440    *    *    *    * |   1   0   1   0
o   . .   x3/2*a      |    3 |    0    0    3 |    *    * 2400    *    *    * |   0   1   1   0
.   x3x   .           |    6 |    3    3    0 |    *    *    * 2400    *    * |   1   0   0   1
.   x .   x           |    4 |    2    0    2 |    *    *    *    * 3600    * |   0   1   0   1
.   . x5/3x           |   10 |    0    5    5 |    *    *    *    *    * 1440 |   0   0   1   1
----------------------+------+----------------+-------------------------------+----------------
o3/2x3x   .   *a5/3*c    60 |   60   60    0 |   20   12    0   20    0    0 | 120   *   *   *
o3/2x .   x3/2*a         12 |   12    0   12 |    4    0    4    0    6    0 |   * 600   *   *
o   . x5/3x3/2*a5/3*c    60 |    0   60   60 |    0   12   20    0    0   12 |   *   * 120   *
.   x3x5/3x             120 |   60   60   60 |    0    0    0   20   30   12 |   *   *   * 120

© 2004-2019
top of page