Acronym gik vixathi
Name great skewverted hexacositriakishecatonicosachoro
Cross sections
 ©
Circumradius sqrt[13-4 sqrt(5)] = 2.013884
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: co dip gaddid gaquatid oho qrid sidditdid siid toe
gikkiv datapixady 60072000012012000
gik vixathi 60001201200001200
gik vadixady 00006001200120600
& others)
Face vector 7200, 21600, 13680, 960
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron  

As abstract polytope gik vixathi is isomorphic to sik vixathi, thereby replacing pentagrams by pentagons and decagrams by decagons, respectively siid by giid, gaddid by saddid, and gaquatid by grid.


Incidence matrix according to Dynkin symbol

o3x3x5/3x3*a5/2*c

. . .   .         | 7200 |    2    2    2 |    1    1    1    2    2    2 |   1   1   1   2
------------------+------+----------------+-------------------------------+----------------
. x .   .         |    2 | 7200    *    * |    1    0    0    1    1    0 |   1   1   0   1
. . x   .         |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
. . .   x         |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
------------------+------+----------------+-------------------------------+----------------
o3x .   .         |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
o . x   . *a5/2*c |    5 |    0    5    0 |    * 1440    *    *    *    * |   1   0   1   0
o . .   x3*a      |    3 |    0    0    3 |    *    * 2400    *    *    * |   0   1   1   0
. x3x   .         |    6 |    3    3    0 |    *    *    * 2400    *    * |   1   0   0   1
. x .   x         |    4 |    2    0    2 |    *    *    *    * 3600    * |   0   1   0   1
. . x5/3x         |   10 |    0    5    5 |    *    *    *    *    * 1440 |   0   0   1   1
------------------+------+----------------+-------------------------------+----------------
o3x3x   . *a5/2*c    60 |   60   60    0 |   20   12    0   20    0    0 | 120   *   *   *
o3x .   x3*a         12 |   12    0   12 |    4    0    4    0    6    0 |   * 600   *   *
o . x5/3x3*a5/2*c    60 |    0   60   60 |    0   12   20    0    0   12 |   *   * 120   *
. x3x5/3x           120 |   60   60   60 |    0    0    0   20   30   12 |   *   *   * 120

o3/2x3x5/3x3/2*a5/3*c

.   . .   .           | 7200 |    2    2    2 |    1    1    1    2    2    2 |   1   1   1   2
----------------------+------+----------------+-------------------------------+----------------
.   x .   .           |    2 | 7200    *    * |    1    0    0    1    1    0 |   1   1   0   1
.   . x   .           |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
.   . .   x           |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
----------------------+------+----------------+-------------------------------+----------------
o3/2x .   .           |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
o   . x   .   *a5/3*c |    5 |    0    5    0 |    * 1440    *    *    *    * |   1   0   1   0
o   . .   x3/2*a      |    3 |    0    0    3 |    *    * 2400    *    *    * |   0   1   1   0
.   x3x   .           |    6 |    3    3    0 |    *    *    * 2400    *    * |   1   0   0   1
.   x .   x           |    4 |    2    0    2 |    *    *    *    * 3600    * |   0   1   0   1
.   . x5/3x           |   10 |    0    5    5 |    *    *    *    *    * 1440 |   0   0   1   1
----------------------+------+----------------+-------------------------------+----------------
o3/2x3x   .   *a5/3*c    60 |   60   60    0 |   20   12    0   20    0    0 | 120   *   *   *
o3/2x .   x3/2*a         12 |   12    0   12 |    4    0    4    0    6    0 |   * 600   *   *
o   . x5/3x3/2*a5/3*c    60 |    0   60   60 |    0   12   20    0    0   12 |   *   * 120   *
.   x3x5/3x             120 |   60   60   60 |    0    0    0   20   30   12 |   *   *   * 120

© 2004-2025
top of page