Acronym gik vixathi
Name great skewverted hexacositriakishecatonicosachoro
Colonel of regiment (is itself locally convex – uniform polychoral members:
 by cells: co dip gaddid gaquatid oho qrid sidditdid siid toe gikkiv datapixady 600 720 0 0 0 120 120 0 0 gik vixathi 600 0 120 120 0 0 0 120 0 gik vadixady 0 0 0 0 600 120 0 120 600
& others)
External

As abstract polytope gik vixathi is isomorphic to sik vixathi, thereby replacing pentagrams by pentagons and decagrams by decagons, respectively siid by giid, gaddid by saddid, and gaquatid by grid.

Incidence matrix according to Dynkin symbol

```o3x3x5/3x3*a5/2*c

. . .   .         | 7200 |    2    2    2 |    1    1    1    2    2    2 |   1   1   1   2
------------------+------+----------------+-------------------------------+----------------
. x .   .         |    2 | 7200    *    * |    1    0    0    1    1    0 |   1   1   0   1
. . x   .         |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
. . .   x         |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
------------------+------+----------------+-------------------------------+----------------
o3x .   .         |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
o . x   . *a5/2*c |    5 |    0    5    0 |    * 1440    *    *    *    * |   1   0   1   0
o . .   x3*a      |    3 |    0    0    3 |    *    * 2400    *    *    * |   0   1   1   0
. x3x   .         |    6 |    3    3    0 |    *    *    * 2400    *    * |   1   0   0   1
. x .   x         |    4 |    2    0    2 |    *    *    *    * 3600    * |   0   1   0   1
. . x5/3x         |   10 |    0    5    5 |    *    *    *    *    * 1440 |   0   0   1   1
------------------+------+----------------+-------------------------------+----------------
o3x3x   . *a5/2*c ♦   60 |   60   60    0 |   20   12    0   20    0    0 | 120   *   *   *
o3x .   x3*a      ♦   12 |   12    0   12 |    4    0    4    0    6    0 |   * 600   *   *
o . x5/3x3*a5/2*c ♦   60 |    0   60   60 |    0   12   20    0    0   12 |   *   * 120   *
. x3x5/3x         ♦  120 |   60   60   60 |    0    0    0   20   30   12 |   *   *   * 120
```

```o3/2x3x5/3x3/2*a5/3*c

.   . .   .           | 7200 |    2    2    2 |    1    1    1    2    2    2 |   1   1   1   2
----------------------+------+----------------+-------------------------------+----------------
.   x .   .           |    2 | 7200    *    * |    1    0    0    1    1    0 |   1   1   0   1
.   . x   .           |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
.   . .   x           |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
----------------------+------+----------------+-------------------------------+----------------
o3/2x .   .           |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
o   . x   .   *a5/3*c |    5 |    0    5    0 |    * 1440    *    *    *    * |   1   0   1   0
o   . .   x3/2*a      |    3 |    0    0    3 |    *    * 2400    *    *    * |   0   1   1   0
.   x3x   .           |    6 |    3    3    0 |    *    *    * 2400    *    * |   1   0   0   1
.   x .   x           |    4 |    2    0    2 |    *    *    *    * 3600    * |   0   1   0   1
.   . x5/3x           |   10 |    0    5    5 |    *    *    *    *    * 1440 |   0   0   1   1
----------------------+------+----------------+-------------------------------+----------------
o3/2x3x   .   *a5/3*c ♦   60 |   60   60    0 |   20   12    0   20    0    0 | 120   *   *   *
o3/2x .   x3/2*a      ♦   12 |   12    0   12 |    4    0    4    0    6    0 |   * 600   *   *
o   . x5/3x3/2*a5/3*c ♦   60 |    0   60   60 |    0   12   20    0    0   12 |   *   * 120   *
.   x3x5/3x           ♦  120 |   60   60   60 |    0    0    0   20   30   12 |   *   *   * 120
```