Acronym hixquitixhi Name hecatonicosihexacosiquasitruncated hexacosihecatonicosachoron Circumradius sqrt[10-2 sqrt(5)] = 2.351141 Colonel of regiment sixathi Externallinks

As abstract polytope hixquitixhi is isomorphic to hixtixhi, thereby replacing pentagons by pentagrams and interchanging the roles of the decagons and decagrams, respectively replacing saddid by gaddid and quit sissid by tigid. – As such hixquitixhi is a lieutenant.

Incidence matrix according to Dynkin symbol

```x3x5/3x5/4o3*a5*c

. .   .   .       | 7200 |    2    1    2 |    2    2    1    2    1 |   2   1   1   1
------------------+------+----------------+--------------------------+----------------
x .   .   .       |    2 | 7200    *    * |    1    1    1    0    0 |   1   1   1   0
. x   .   .       |    2 |    * 3600    * |    2    0    0    2    0 |   2   1   0   1
. .   x   .       |    2 |    *    * 7200 |    0    1    0    1    1 |   1   0   1   1
------------------+------+----------------+--------------------------+----------------
x3x   .   .       |    6 |    3    3    0 | 2400    *    *    *    * |   1   1   0   0
x .   x   . *a5*c |   10 |    5    0    5 |    * 1440    *    *    * |   1   0   1   0
x .   .   o3*a    |    3 |    3    0    0 |    *    * 2400    *    * |   0   1   1   0
. x5/3x   .       |   10 |    0    5    5 |    *    *    * 1440    * |   1   0   0   1
. .   x5/4o       |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
------------------+------+----------------+--------------------------+----------------
x3x5/3x   . *a5*c ♦  120 |   60   60   60 |   20   12    0   12    0 | 120   *   *   *
x3x   .   o3*a    ♦   12 |   12    6    0 |    4    0    4    0    0 |   * 600   *   *
x .   x5/4o3*a5*c ♦   60 |   60    0   60 |    0   12   20    0   12 |   *   * 120   *
. x5/3x5/4o       ♦   60 |    0   30   60 |    0    0    0   12   12 |   *   *   * 120
```

```x3x5/3x5o3/2*a5*c

. .   . .         | 7200 |    2    1    2 |    2    2    1    2    1 |   2   1   1   1
------------------+------+----------------+--------------------------+----------------
x .   . .         |    2 | 7200    *    * |    1    1    1    0    0 |   1   1   1   0
. x   . .         |    2 |    * 3600    * |    2    0    0    2    0 |   2   1   0   1
. .   x .         |    2 |    *    * 7200 |    0    1    0    1    1 |   1   0   1   1
------------------+------+----------------+--------------------------+----------------
x3x   . .         |    6 |    3    3    0 | 2400    *    *    *    * |   1   1   0   0
x .   x .   *a5*c |   10 |    5    0    5 |    * 1440    *    *    * |   1   0   1   0
x .   . o3/2*a    |    3 |    3    0    0 |    *    * 2400    *    * |   0   1   1   0
. x5/3x .         |   10 |    0    5    5 |    *    *    * 1440    * |   1   0   0   1
. .   x5o         |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
------------------+------+----------------+--------------------------+----------------
x3x5/3x .   *a5*c ♦  120 |   60   60   60 |   20   12    0   12    0 | 120   *   *   *
x3x   . o3/2*a    ♦   12 |   12    6    0 |    4    0    4    0    0 |   * 600   *   *
x .   x5o3/2*a5*c ♦   60 |   60    0   60 |    0   12   20    0   12 |   *   * 120   *
. x5/3x5o         ♦   60 |    0   30   60 |    0    0    0   12   12 |   *   *   * 120
```