Acronym | git thixady |
Name | great tritrigonal hecatonicosihexacosidishecatonicosachoron |
Cross sections |
|
Circumradius | sqrt[8-3 sqrt(5)] = 1.136572 |
Colonel of regiment | getit xethi |
Face vector | 2400, 10800, 7680, 960 |
Confer |
|
External links |
![]() ![]() |
As abstract polytope git thixady is isomorphic to sit thixady, thereby replacing the decagrams by decagons and the pentagons by pentagrams, resp. replacing the gidtid by sidtid, gidditdid by sidditdid, and quit gissid by tid.
Incidence matrix according to Dynkin symbol
_x_ _3- | 5/3 o< 5/4 >x -3_ | 3/2 -o-
x3o3o3/2x5/3*a5/4*c . . . . | 2400 | 6 3 | 3 3 6 3 | 1 3 3 1 --------------------+------+-----------+---------------------+---------------- x . . . | 2 | 7200 * | 1 1 1 0 | 1 1 1 0 . . . x | 2 | * 3600 | 0 0 2 2 | 0 1 2 1 --------------------+------+-----------+---------------------+---------------- x3o . . | 3 | 3 0 | 2400 * * * | 1 1 0 0 x . o . *a5/4*c | 5 | 5 0 | * 1440 * * | 1 0 1 0 x . . x5/3*a | 10 | 5 5 | * * 1440 * | 0 1 1 0 . . o3/2x | 3 | 0 3 | * * * 2400 | 0 0 1 1 --------------------+------+-----------+---------------------+---------------- x3o3o . *a5/4*c ♦ 20 | 60 0 | 20 12 0 0 | 120 * * * x3o . x5/3*a ♦ 60 | 60 30 | 20 0 12 0 | * 120 * * x . o3/2x5/3*a5/4*c ♦ 60 | 60 60 | 0 12 12 20 | * * 120 * . o3o3/2x ♦ 4 | 0 6 | 0 0 0 4 | * * * 600
_x_ _3- | 5/3 o< 5 >x 3/2 | _3- -o-
x3o3/2o3x5/3*a5*c . . . . | 2400 | 6 3 | 3 3 6 3 | 1 3 3 1 ------------------+------+-----------+---------------------+---------------- x . . . | 2 | 7200 * | 1 1 1 0 | 1 1 1 0 . . . x | 2 | * 3600 | 0 0 2 2 | 0 1 2 1 ------------------+------+-----------+---------------------+---------------- x3o . . | 3 | 3 0 | 2400 * * * | 1 1 0 0 x . o . *a5*c | 5 | 5 0 | * 1440 * * | 1 0 1 0 x . . x5/3*a | 10 | 5 5 | * * 1440 * | 0 1 1 0 . . o3x | 3 | 0 3 | * * * 2400 | 0 0 1 1 ------------------+------+-----------+---------------------+---------------- x3o3/2o . *a5*c ♦ 20 | 60 0 | 20 12 0 0 | 120 * * * x3o . x5/3*a ♦ 60 | 60 30 | 20 0 12 0 | * 120 * * x . o3x5/3*a5*c ♦ 60 | 60 60 | 0 12 12 20 | * * 120 * . o3/2o3x ♦ 4 | 0 6 | 0 0 0 4 | * * * 600
_x_ 3/2 | 5/3 o< 5 >x -3_ | _3- -o-
x3/2o3o3x5/3*a5*c . . . . | 2400 | 6 3 | 3 3 6 3 | 1 3 3 1 ------------------+------+-----------+---------------------+---------------- x . . . | 2 | 7200 * | 1 1 1 0 | 1 1 1 0 . . . x | 2 | * 3600 | 0 0 2 2 | 0 1 2 1 ------------------+------+-----------+---------------------+---------------- x3/2o . . | 3 | 3 0 | 2400 * * * | 1 1 0 0 x . o . *a5*c | 5 | 5 0 | * 1440 * * | 1 0 1 0 x . . x5/3*a | 10 | 5 5 | * * 1440 * | 0 1 1 0 . . o3x | 3 | 0 3 | * * * 2400 | 0 0 1 1 ------------------+------+-----------+---------------------+---------------- x3/2o3o . *a5*c ♦ 20 | 60 0 | 20 12 0 0 | 120 * * * x3/2o . x5/3*a ♦ 60 | 60 30 | 20 0 12 0 | * 120 * * x . o3x5/3*a5*c ♦ 60 | 60 60 | 0 12 12 20 | * * 120 * . o3o3x ♦ 4 | 0 6 | 0 0 0 4 | * * * 600
_x_ 3/2 | 5/3 o< 5/4 >x 3/2 | 3/2 -o-
x3/2o3/2o3/2x5/3*a5/4*c . . . . | 2400 | 6 3 | 3 3 6 3 | 1 3 3 1 ------------------------+------+-----------+---------------------+---------------- x . . . | 2 | 7200 * | 1 1 1 0 | 1 1 1 0 . . . x | 2 | * 3600 | 0 0 2 2 | 0 1 2 1 ------------------------+------+-----------+---------------------+---------------- x3/2o . . | 3 | 3 0 | 2400 * * * | 1 1 0 0 x . o . *a5/4*c | 5 | 5 0 | * 1440 * * | 1 0 1 0 x . . x5/3*a | 10 | 5 5 | * * 1440 * | 0 1 1 0 . . o3/2x | 3 | 0 3 | * * * 2400 | 0 0 1 1 ------------------------+------+-----------+---------------------+---------------- x3/2o3/2o . *a5/4*c ♦ 20 | 60 0 | 20 12 0 0 | 120 * * * x3/2o . x5/3*a ♦ 60 | 60 30 | 20 0 12 0 | * 120 * * x . o3/2x5/3*a5/4*c ♦ 60 | 60 60 | 0 12 12 20 | * * 120 * . o3/2o3/2x ♦ 4 | 0 6 | 0 0 0 4 | * * * 600
© 2004-2025 | top of page |