Acronym | girfaddic |
Name | great retrofrustic distetracontoctachoron |
Cross sections |
© |
Circumradius | sqrt(2) = 1.414214 |
General of army | cont |
Colonel of regiment | afdec |
Face vector | 288, 1152, 816, 96 |
Confer |
|
External links |
As abstract polytope girfaddic is isomorphic to afdec, thereby replacing the octagons by octagrams, resp. replacing socco by gocco. – As such girfaddic is a lieutenant.
x3o4/3x3o4/3*a4*c . . . . | 288 | 4 4 | 2 4 2 2 2 | 2 1 2 1 ------------------+-----+---------+---------------------+------------ x . . . | 2 | 576 * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 576 | 0 1 0 1 1 | 1 0 1 1 ------------------+-----+---------+---------------------+------------ x3o . . | 3 | 3 0 | 192 * * * * | 1 1 0 0 x . x . *a4*c | 8 | 4 4 | * 144 * * * | 1 0 1 0 x . . o4/3*a | 4 | 4 0 | * * 144 * * | 0 1 1 0 . o4/3x . | 4 | 0 4 | * * * 144 * | 1 0 0 1 . . x3o | 3 | 0 3 | * * * * 192 | 0 0 1 1 ------------------+-----+---------+---------------------+------------ x3o4/3x . *a4*c ♦ 24 | 24 24 | 8 6 0 6 0 | 24 * * * x3o . o4/3*a ♦ 12 | 24 0 | 8 0 6 0 0 | * 24 * * x . x3o4/3*a4*c ♦ 24 | 24 24 | 0 6 6 0 8 | * * 24 * . o4/3x3o ♦ 12 | 0 24 | 0 0 0 6 8 | * * * 24
or . . . . | 288 | 8 | 4 4 4 | 4 2 ---------------------+-----+------+-------------+------ x . . . & | 2 | 1152 | 1 1 1 | 2 1 ---------------------+-----+------+-------------+------ x3o . . & | 3 | 3 | 384 * * | 1 1 x . x . *a4*c | 8 | 8 | * 144 * | 2 0 x . . o4/3*a & | 4 | 4 | * * 288 | 1 1 ---------------------+-----+------+-------------+------ x3o4/3x . *a4*c & ♦ 24 | 48 | 8 6 6 | 48 * x3o . o4/3*a & ♦ 12 | 24 | 8 0 6 | * 48
x3o4/3x3/2o4*a4*c . . . . | 288 | 4 4 | 2 4 2 2 2 | 2 1 2 1 ------------------+-----+---------+---------------------+------------ x . . . | 2 | 576 * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 576 | 0 1 0 1 1 | 1 0 1 1 ------------------+-----+---------+---------------------+------------ x3o . . | 3 | 3 0 | 192 * * * * | 1 1 0 0 x . x . *a4*c | 8 | 4 4 | * 144 * * * | 1 0 1 0 x . . o4*a | 4 | 4 0 | * * 144 * * | 0 1 1 0 . o4/3x . | 4 | 0 4 | * * * 144 * | 1 0 0 1 . . x3/2o | 3 | 0 3 | * * * * 192 | 0 0 1 1 ------------------+-----+---------+---------------------+------------ x3o4/3x . *a4*c ♦ 24 | 24 24 | 8 6 0 6 0 | 24 * * * x3o . o4*a ♦ 12 | 24 0 | 8 0 6 0 0 | * 24 * * x . x3/2o4*a4*c ♦ 24 | 24 24 | 0 6 6 0 8 | * * 24 * . o4/3x3/2o ♦ 12 | 0 24 | 0 0 0 6 8 | * * * 24
x3/2o4x3/2o4*a4*c . . . . | 288 | 4 4 | 2 4 2 2 2 | 2 1 2 1 ------------------+-----+---------+---------------------+------------ x . . . | 2 | 576 * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 576 | 0 1 0 1 1 | 1 0 1 1 ------------------+-----+---------+---------------------+------------ x3/2o . . | 3 | 3 0 | 192 * * * * | 1 1 0 0 x . x . *a4*c | 8 | 4 4 | * 144 * * * | 1 0 1 0 x . . o4*a | 4 | 4 0 | * * 144 * * | 0 1 1 0 . o4x . | 4 | 0 4 | * * * 144 * | 1 0 0 1 . . x3/2o | 3 | 0 3 | * * * * 192 | 0 0 1 1 ------------------+-----+---------+---------------------+------------ x3/2o4x . *a4*c ♦ 24 | 24 24 | 8 6 0 6 0 | 24 * * * x3/2o . o4*a ♦ 12 | 24 0 | 8 0 6 0 0 | * 24 * * x . x3/2o4*a4*c ♦ 24 | 24 24 | 0 6 6 0 8 | * * 24 * . o4x3/2o ♦ 12 | 0 24 | 0 0 0 6 8 | * * * 24
or . . . . | 288 | 8 | 4 4 4 | 4 2 ---------------------+-----+------+-------------+------ x . . . & | 2 | 1152 | 1 1 1 | 2 1 ---------------------+-----+------+-------------+------ x3/2o . . & | 3 | 3 | 384 * * | 1 1 x . x . *a4*c | 8 | 8 | * 144 * | 2 0 x . . o4*a & | 4 | 4 | * * 288 | 1 1 ---------------------+-----+------+-------------+------ x3/2o4x . *a4*c & ♦ 24 | 48 | 8 6 6 | 48 * x3/2o . o4*a & ♦ 12 | 24 | 8 0 6 | * 48
© 2004-2025 | top of page |