As abstract polytope gardatady+1440{5} is isomorphic to sirdatady+1440{5/2}, thereby interchanging pentagrams and pentagons, resp. replacing gidtid by sidtid and gid by id.

In this Grünbaumian polychoron it happens that the gidtid and the ditdid become co-realmic. Therefore any such pair looks like their blend, the sidtid, in addition to those pairs of coincident pentagons, which while blending would be reduced. Accordingly, for gardatady+1440{5}, edges and pentagons come in coincident pairs too.

Incidence matrix according to Dynkin symbol

```x3o3o3o5/2*a5/4*c

. . . .           | 600 |   24 |   12   12   12 |   4   6   4
------------------+-----+------+----------------+------------
x . . .           |   2 | 7200 |    1    1    1 |   1   1   1
------------------+-----+------+----------------+------------
x3o . .           |   3 |    3 | 2400    *    * |   1   1   0
x . o .   *a5/4*c |   5 |    5 |    * 1440    * |   1   0   1
x . . o5/2*a      |   5 |    5 |    *    * 1440 |   0   1   1
------------------+-----+------+----------------+------------
x3o3o .   *a5/4*c ♦  20 |   60 |   20   12    0 | 120   *   *
x3o . o5/2*a      ♦  30 |   60 |   20    0   12 |   * 120   *
x . o3o5/2*a5/4*c ♦  20 |   60 |    0   12   12 |   *   * 120
```

```x3o3o3/2o5/3*a5/4*c

. . .   .           | 600 |   24 |   12   12   12 |   4   6   4
--------------------+-----+------+----------------+------------
x . .   .           |   2 | 7200 |    1    1    1 |   1   1   1
--------------------+-----+------+----------------+------------
x3o .   .           |   3 |    3 | 2400    *    * |   1   1   0
x . o   .   *a5/4*c |   5 |    5 |    * 1440    * |   1   0   1
x . .   o5/3*a      |   5 |    5 |    *    * 1440 |   0   1   1
--------------------+-----+------+----------------+------------
x3o3o   .   *a5/4*c ♦  20 |   60 |   20   12    0 | 120   *   *
x3o .   o5/3*a      ♦  30 |   60 |   20    0   12 |   * 120   *
x . o3/2o5/3*a5/4*c ♦  20 |   60 |    0   12   12 |   *   * 120
```

```x3o3/2o3/2o5/2*a5*c

. .   .   .         | 600 |   24 |   12   12   12 |   4   6   4
--------------------+-----+------+----------------+------------
x .   .   .         |   2 | 7200 |    1    1    1 |   1   1   1
--------------------+-----+------+----------------+------------
x3o   .   .         |   3 |    3 | 2400    *    * |   1   1   0
x .   o   .   *a5*c |   5 |    5 |    * 1440    * |   1   0   1
x .   .   o5/2*a    |   5 |    5 |    *    * 1440 |   0   1   1
--------------------+-----+------+----------------+------------
x3o3/2o   .   *a5*c ♦  20 |   60 |   20   12    0 | 120   *   *
x3o   .   o5/2*a    ♦  30 |   60 |   20    0   12 |   * 120   *
x .   o3/2o5/2*a5*c ♦  20 |   60 |    0   12   12 |   *   * 120
```

```x3o3/2o3o5/3*a5*c

. .   . .         | 600 |   24 |   12   12   12 |   4   6   4
------------------+-----+------+----------------+------------
x .   . .         |   2 | 7200 |    1    1    1 |   1   1   1
------------------+-----+------+----------------+------------
x3o   . .         |   3 |    3 | 2400    *    * |   1   1   0
x .   o .   *a5*c |   5 |    5 |    * 1440    * |   1   0   1
x .   . o5/3*a    |   5 |    5 |    *    * 1440 |   0   1   1
------------------+-----+------+----------------+------------
x3o3/2o .   *a5*c ♦  20 |   60 |   20   12    0 | 120   *   *
x3o   . o5/3*a    ♦  30 |   60 |   20    0   12 |   * 120   *
x .   o3o5/3*a5*c ♦  20 |   60 |    0   12   12 |   *   * 120
```

```x3/2o3o3o5/3*a5*c

.   . . .         | 600 |   24 |   12   12   12 |   4   6   4
------------------+-----+------+----------------+------------
x   . . .         |   2 | 7200 |    1    1    1 |   1   1   1
------------------+-----+------+----------------+------------
x3/2o . .         |   3 |    3 | 2400    *    * |   1   1   0
x   . o .   *a5*c |   5 |    5 |    * 1440    * |   1   0   1
x   . . o5/3*a    |   5 |    5 |    *    * 1440 |   0   1   1
------------------+-----+------+----------------+------------
x3/2o3o .   *a5*c ♦  20 |   60 |   20   12    0 | 120   *   *
x3/2o . o5/3*a    ♦  30 |   60 |   20    0   12 |   * 120   *
x   . o3o5/3*a5*c ♦  20 |   60 |    0   12   12 |   *   * 120
```

```x3/2o3o3/2o5/2*a5*c

.   . .   .         | 600 |   24 |   12   12   12 |   4   6   4
--------------------+-----+------+----------------+------------
x   . .   .         |   2 | 7200 |    1    1    1 |   1   1   1
--------------------+-----+------+----------------+------------
x3/2o .   .         |   3 |    3 | 2400    *    * |   1   1   0
x   . o   .   *a5*c |   5 |    5 |    * 1440    * |   1   0   1
x   . .   o5/2*a    |   5 |    5 |    *    * 1440 |   0   1   1
--------------------+-----+------+----------------+------------
x3/2o3o   .   *a5*c ♦  20 |   60 |   20   12    0 | 120   *   *
x3/2o .   o5/2*a    ♦  30 |   60 |   20    0   12 |   * 120   *
x   . o3/2o5/2*a5*c ♦  20 |   60 |    0   12   12 |   *   * 120
```

```x3/2o3/2o3o5/2*a5/4*c

.   .   . .           | 600 |   24 |   12   12   12 |   4   6   4
----------------------+-----+------+----------------+------------
x   .   . .           |   2 | 7200 |    1    1    1 |   1   1   1
----------------------+-----+------+----------------+------------
x3/2o   . .           |   3 |    3 | 2400    *    * |   1   1   0
x   .   o .   *a5/4*c |   5 |    5 |    * 1440    * |   1   0   1
x   .   . o5/2*a      |   5 |    5 |    *    * 1440 |   0   1   1
----------------------+-----+------+----------------+------------
x3/2o3/2o .   *a5/4*c ♦  20 |   60 |   20   12    0 | 120   *   *
x3/2o   . o5/2*a      ♦  30 |   60 |   20    0   12 |   * 120   *
x   .   o3o5/2*a5/4*c ♦  20 |   60 |    0   12   12 |   *   * 120
```

```x3/2o3/2o3/2o5/3*a5/4*c

.   .   .   .           | 600 |   24 |   12   12   12 |   4   6   4
------------------------+-----+------+----------------+------------
x   .   .   .           |   2 | 7200 |    1    1    1 |   1   1   1
------------------------+-----+------+----------------+------------
x3/2o   .   .           |   3 |    3 | 2400    *    * |   1   1   0
x   .   o   .   *a5/4*c |   5 |    5 |    * 1440    * |   1   0   1
x   .   .   o5/3*a      |   5 |    5 |    *    * 1440 |   0   1   1
------------------------+-----+------+----------------+------------
x3/2o3/2o   .   *a5/4*c ♦  20 |   60 |   20   12    0 | 120   *   *
x3/2o   .   o5/3*a      ♦  30 |   60 |   20    0   12 |   * 120   *
x   .   o3/2o5/3*a5/4*c ♦  20 |   60 |    0   12   12 |   *   * 120
```