Acronym gik vadixady Name great skewverted dishexacosidishecatonicosachoron Circumradius sqrt[13-4 sqrt(5)] = 2.013884 Colonel of regiment gik vixathi Externallinks

As abstract polytope gik vadixady is isomorphic to sik vadixady, thereby replacing pentagrams by pentagons, resp. replacing the qrid by srid and siid by giid.

Incidence matrix according to Dynkin symbol

```o3x3x3x5/3*a3/2*c

. . . .           | 7200 |    2    2    2 |    1    1    1    2    2    2 |   1   1   1   2
------------------+------+----------------+-------------------------------+----------------
. x . .           |    2 | 7200    *    * |    1    0    0    1    1    0 |   1   1   0   1
. . x .           |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
. . . x           |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
------------------+------+----------------+-------------------------------+----------------
o3x . .           |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
o . x .   *a3/2*c |    3 |    0    3    0 |    * 2400    *    *    *    * |   1   0   1   0
o . . x5/3*a      |    5 |    0    0    5 |    *    * 1440    *    *    * |   0   1   1   0
. x3x .           |    6 |    3    3    0 |    *    *    * 2400    *    * |   1   0   0   1
. x . x           |    4 |    2    0    2 |    *    *    *    * 3600    * |   0   1   0   1
. . x3x           |    6 |    0    3    3 |    *    *    *    *    * 2400 |   0   0   1   1
------------------+------+----------------+-------------------------------+----------------
o3x3x .   *a3/2*c ♦   12 |   12   12    0 |    4    4    0    4    0    0 | 600   *   *   *
o3x . x5/3*a      ♦   60 |   60    0   60 |   20    0   12    0   30    0 |   * 120   *   *
o . x3x5/3*a3/2*c ♦   60 |    0   60   60 |    0   20   12    0    0   20 |   *   * 120   *
. x3x3x           ♦   24 |   12   12   12 |    0    0    0    4    6    4 |   *   *   * 600
```

```o3/2x3x3x5/2*a3*c

.   . . .         | 7200 |    2    2    2 |    1    1    1    2    2    2 |   1   1   1   2
------------------+------+----------------+-------------------------------+----------------
.   x . .         |    2 | 7200    *    * |    1    0    0    1    1    0 |   1   1   0   1
.   . x .         |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
.   . . x         |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
------------------+------+----------------+-------------------------------+----------------
o3/2x . .         |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
o   . x .   *a3*c |    3 |    0    3    0 |    * 2400    *    *    *    * |   1   0   1   0
o   . . x5/2*a    |    5 |    0    0    5 |    *    * 1440    *    *    * |   0   1   1   0
.   x3x .         |    6 |    3    3    0 |    *    *    * 2400    *    * |   1   0   0   1
.   x . x         |    4 |    2    0    2 |    *    *    *    * 3600    * |   0   1   0   1
.   . x3x         |    6 |    0    3    3 |    *    *    *    *    * 2400 |   0   0   1   1
------------------+------+----------------+-------------------------------+----------------
o3/2x3x .   *a3*c ♦   12 |   12   12    0 |    4    4    0    4    0    0 | 600   *   *   *
o3/2x . x5/2*a    ♦   60 |   60    0   60 |   20    0   12    0   30    0 |   * 120   *   *
o   . x3x5/2*a3*c ♦   60 |    0   60   60 |    0   20   12    0    0   20 |   *   * 120   *
.   x3x3x         ♦   24 |   12   12   12 |    0    0    0    4    6    4 |   *   *   * 600
```

 © 2004-2022 top of page