Acronym sik vixathi
Name small skewverted hexacositriakishecatonicosachoro
Circumradius sqrt[13+4 sqrt(5)] = 4.684471
Colonel of regiment skiv datapixady
Face vector 7200, 21600, 13680, 960
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron

As abstract polytope sik vixathi is isomorphic to gik vixathi, thereby replacing pentagons by pentagrams and decagons by decagrams, respectively giid by siid, saddid by gaddid, and grid by gaquatid. – As such sik vixathi is a lieutenant.


Incidence matrix according to Dynkin symbol

o3x3x5x3*a5/4*c

. . . .         | 7200 |    2    2    2 |    1    1    1    2    2    2 |   1   1   1   2
----------------+------+----------------+-------------------------------+----------------
. x . .         |    2 | 7200    *    * |    1    0    0    1    1    0 |   1   1   0   1
. . x .         |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
. . . x         |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
----------------+------+----------------+-------------------------------+----------------
o3x . .         |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
o . x . *a5/4*c |    5 |    0    5    0 |    * 1440    *    *    *    * |   1   0   1   0
o . . x3*a      |    3 |    0    0    3 |    *    * 2400    *    *    * |   0   1   1   0
. x3x .         |    6 |    3    3    0 |    *    *    * 2400    *    * |   1   0   0   1
. x . x         |    4 |    2    0    2 |    *    *    *    * 3600    * |   0   1   0   1
. . x5x         |   10 |    0    5    5 |    *    *    *    *    * 1440 |   0   0   1   1
----------------+------+----------------+-------------------------------+----------------
o3x3x . *a5/4*c    60 |   60   60    0 |   20   12    0   20    0    0 | 120   *   *   *
o3x . x3*a         12 |   12    0   12 |    4    0    4    0    6    0 |   * 600   *   *
o . x5x3*a5/4*c    60 |    0   60   60 |    0   12   20    0    0   12 |   *   * 120   *
. x3x5x           120 |   60   60   60 |    0    0    0   20   30   12 |   *   *   * 120

o3/2x3x5x3/2*a5*c

.   . . .         | 7200 |    2    2    2 |    1    1    1    2    2    2 |   1   1   1   2
------------------+------+----------------+-------------------------------+----------------
.   x . .         |    2 | 7200    *    * |    1    0    0    1    1    0 |   1   1   0   1
.   . x .         |    2 |    * 7200    * |    0    1    0    1    0    1 |   1   0   1   1
.   . . x         |    2 |    *    * 7200 |    0    0    1    0    1    1 |   0   1   1   1
------------------+------+----------------+-------------------------------+----------------
o3/2x . .         |    3 |    3    0    0 | 2400    *    *    *    *    * |   1   1   0   0
o   . x .   *a5*c |    5 |    0    5    0 |    * 1440    *    *    *    * |   1   0   1   0
o   . . x3/2*a    |    3 |    0    0    3 |    *    * 2400    *    *    * |   0   1   1   0
.   x3x .         |    6 |    3    3    0 |    *    *    * 2400    *    * |   1   0   0   1
.   x . x         |    4 |    2    0    2 |    *    *    *    * 3600    * |   0   1   0   1
.   . x5x         |   10 |    0    5    5 |    *    *    *    *    * 1440 |   0   0   1   1
------------------+------+----------------+-------------------------------+----------------
o3/2x3x .   *a5*c    60 |   60   60    0 |   20   12    0   20    0    0 | 120   *   *   *
o3/2x . x3/2*a       12 |   12    0   12 |    4    0    4    0    6    0 |   * 600   *   *
o   . x5x3/2*a5*c    60 |    0   60   60 |    0   12   20    0    0   12 |   *   * 120   *
.   x3x5x           120 |   60   60   60 |    0    0    0   20   30   12 |   *   *   * 120

© 2004-2025
top of page