Acronym rawvhitto
Name retrosphenoverted hexadecatesseractioctachoron
Cross sections
 ©
Circumradius sqrt(3) = 1.732051
Coordinates (sqrt(2), 1/sqrt(2), 1/sqrt(2), 0)   & all permutations, all changes of sign
General of army rico
Colonel of regiment rico
Face vector 96, 288, 208, 32
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron

Incidence matrix according to Dynkin symbol

o4x3x3o3/2*b

. . . .      | 96 |   4  2 |  2  4  2  1 | 2 1  2
-------------+----+--------+-------------+-------
. x . .      |  2 | 192  * |  1  1  1  0 | 1 1  1
. . x .      |  2 |   * 96 |  0  2  0  1 | 1 0  2
-------------+----+--------+-------------+-------
o4x . .      |  4 |   4  0 | 48  *  *  * | 1 1  0
. x3x .      |  6 |   3  3 |  * 64  *  * | 1 0  1
. x . o3/2*b |  3 |   3  0 |  *  * 64  * | 0 1  1
. . x3o      |  3 |   0  3 |  *  *  * 32 | 0 0  2
-------------+----+--------+-------------+-------
o4x3x .       24 |  24 12 |  6  8  0  0 | 8 *  *
o4x . o3/2*b  12 |  24  0 |  6  0  8  0 | * 8  *
. x3x3o3/2*b  12 |  12 12 |  0  4  4  4 | * * 16

o4x3x3/2o3*b

. . .   .    | 96 |   4  2 |  2  4  2  1 | 2 1  2
-------------+----+--------+-------------+-------
. x .   .    |  2 | 192  * |  1  1  1  0 | 1 1  1
. . x   .    |  2 |   * 96 |  0  2  0  1 | 1 0  2
-------------+----+--------+-------------+-------
o4x .   .    |  4 |   4  0 | 48  *  *  * | 1 1  0
. x3x   .    |  6 |   3  3 |  * 64  *  * | 1 0  1
. x .   o3*b |  3 |   3  0 |  *  * 64  * | 0 1  1
. . x3/2o    |  3 |   0  3 |  *  *  * 32 | 0 0  2
-------------+----+--------+-------------+-------
o4x3x   .     24 |  24 12 |  6  8  0  0 | 8 *  *
o4x .   o3*b  12 |  24  0 |  6  0  8  0 | * 8  *
. x3x3/2o3*b  12 |  12 12 |  0  4  4  4 | * * 16

o4/3x3x3o3/2*b

.   . . .      | 96 |   4  2 |  2  4  2  1 | 2 1  2
---------------+----+--------+-------------+-------
.   x . .      |  2 | 192  * |  1  1  1  0 | 1 1  1
.   . x .      |  2 |   * 96 |  0  2  0  1 | 1 0  2
---------------+----+--------+-------------+-------
o4/3x . .      |  4 |   4  0 | 48  *  *  * | 1 1  0
.   x3x .      |  6 |   3  3 |  * 64  *  * | 1 0  1
.   x . o3/2*b |  3 |   3  0 |  *  * 64  * | 0 1  1
.   . x3o      |  3 |   0  3 |  *  *  * 32 | 0 0  2
---------------+----+--------+-------------+-------
o4/3x3x .       24 |  24 12 |  6  8  0  0 | 8 *  *
o4/3x . o3/2*b  12 |  24  0 |  6  0  8  0 | * 8  *
.   x3x3o3/2*b  12 |  12 12 |  0  4  4  4 | * * 16

o4/3x3x3/2o3*b

.   . .   .    | 96 |   4  2 |  2  4  2  1 | 2 1  2
---------------+----+--------+-------------+-------
.   x .   .    |  2 | 192  * |  1  1  1  0 | 1 1  1
.   . x   .    |  2 |   * 96 |  0  2  0  1 | 1 0  2
---------------+----+--------+-------------+-------
o4/3x .   .    |  4 |   4  0 | 48  *  *  * | 1 1  0
.   x3x   .    |  6 |   3  3 |  * 64  *  * | 1 0  1
.   x .   o3*b |  3 |   3  0 |  *  * 64  * | 0 1  1
.   . x3/2o    |  3 |   0  3 |  *  *  * 32 | 0 0  2
---------------+----+--------+-------------+-------
o4/3x3x   .     24 |  24 12 |  6  8  0  0 | 8 *  *
o4/3x .   o3*b  12 |  24  0 |  6  0  8  0 | * 8  *
.   x3x3/2o3*b  12 |  12 12 |  0  4  4  4 | * * 16

x3x3o3x3*a3/2*c

. . . .         | 96 |  2  2  2 |  2  1  2  1  2  1 | 1 2 1 1
----------------+----+----------+-------------------+--------
x . . .         |  2 | 96  *  * |  1  1  1  0  0  0 | 1 1 1 0
. x . .         |  2 |  * 96  * |  1  0  0  1  1  0 | 1 1 0 1
. . . x         |  2 |  *  * 96 |  0  0  1  0  1  1 | 0 1 1 1
----------------+----+----------+-------------------+--------
x3x . .         |  6 |  3  3  0 | 32  *  *  *  *  * | 1 1 0 0
x . o . *a3/2*c |  3 |  3  0  0 |  * 32  *  *  *  * | 1 0 1 0
x . . x3*a      |  6 |  3  0  3 |  *  * 32  *  *  * | 0 1 1 0
. x3o .         |  3 |  0  3  0 |  *  *  * 32  *  * | 1 0 0 1
. x . x         |  4 |  0  2  2 |  *  *  *  * 48  * | 0 1 0 1
. . o3x         |  3 |  0  0  3 |  *  *  *  *  * 32 | 0 0 1 1
----------------+----+----------+-------------------+--------
x3x3o . *a3/2*c  12 | 12 12  0 |  4  4  0  4  0  0 | 8 * * *
x3x . x3*a       24 | 12 12 12 |  4  0  4  0  6  0 | * 8 * *
x . o3x3*a3/2*c  12 | 12  0 12 |  0  4  4  0  0  4 | * * 8 *
. x3o3x          12 |  0 12 12 |  0  0  0  4  6  4 | * * * 8

x3x3/2o3/2x3*a3*c

. .   .   .       | 96 |  2  2  2 |  2  1  2  1  2  1 | 1 2 1 1
------------------+----+----------+-------------------+--------
x .   .   .       |  2 | 96  *  * |  1  1  1  0  0  0 | 1 1 1 0
. x   .   .       |  2 |  * 96  * |  1  0  0  1  1  0 | 1 1 0 1
. .   .   x       |  2 |  *  * 96 |  0  0  1  0  1  1 | 0 1 1 1
------------------+----+----------+-------------------+--------
x3x   .   .       |  6 |  3  3  0 | 32  *  *  *  *  * | 1 1 0 0
x .   o   . *a3*c |  3 |  3  0  0 |  * 32  *  *  *  * | 1 0 1 0
x .   .   x3*a    |  6 |  3  0  3 |  *  * 32  *  *  * | 0 1 1 0
. x3/2o   .       |  3 |  0  3  0 |  *  *  * 32  *  * | 1 0 0 1
. x   .   x       |  4 |  0  2  2 |  *  *  *  * 48  * | 0 1 0 1
. .   o3/2x       |  3 |  0  0  3 |  *  *  *  *  * 32 | 0 0 1 1
------------------+----+----------+-------------------+--------
x3x3/2o   . *a3*c  12 | 12 12  0 |  4  4  0  4  0  0 | 8 * * *
x3x   .   x3*a     24 | 12 12 12 |  4  0  4  0  6  0 | * 8 * *
x .   o3/2x3*a3*c  12 | 12  0 12 |  0  4  4  0  0  4 | * * 8 *
. x3/2o3/2x        12 |  0 12 12 |  0  0  0  4  6  4 | * * * 8

β3o3x4o

both( . . . . ) | 96 |   4  2 |  2  2  1  4 | 1  2 2
----------------+----+--------+-------------+-------
both( . . x . ) |  2 | 192  * |  1  1  0  1 | 1  1 1
sefa( β3o . . ) |  2 |   * 96 |  0  0  1  2 | 0  2 1
----------------+----+--------+-------------+-------
both( . o3x . ) |  3 |   3  0 | 64  *  *  * | 1  1 0
both( . . x4o ) |  4 |   4  0 |  * 48  *  * | 1  0 1
      β3o . .     3 |   0  3 |  *  * 32  * | 0  2 0
sefa( β3o3x . ) |  6 |   3  3 |  *  *  * 64 | 0  1 1
----------------+----+--------+-------------+-------
both( . o3x4o )  12 |  24  0 |  8  6  0  0 | 8  * *
      β3o3x .    12 |  12 12 |  4  0  4  4 | * 16 *
sefa( β3o3x4o )  24 |  24 12 |  0  6  0  8 | *  * 8

starting figure: x3o3x4o

β3o3x *b3x

both( . . .    . ) | 96 |  2  2  2 |  1  1  2  1  2  2 | 1 1 1 2
-------------------+----+----------+-------------------+--------
both( . . x    . ) |  2 | 96  *  * |  1  0  1  0  1  0 | 1 1 0 1
both( . . .    x ) |  2 |  * 96  * |  0  1  1  0  0  1 | 1 0 1 1
sefa( β3o .    . ) |  2 |  *  * 96 |  0  0  0  1  1  1 | 0 1 1 1
-------------------+----+----------+-------------------+--------
both( . o3x    . ) |  3 |  3  0  0 | 32  *  *  *  *  * | 1 1 0 0
both( . o . *b3x ) |  3 |  0  3  0 |  * 32  *  *  *  * | 1 0 1 0
both( . . x    x ) |  4 |  2  2  0 |  *  * 48  *  *  * | 1 0 0 1
      β3o .    .     3 |  0  0  3 |  *  *  * 32  *  * | 0 1 1 0
sefa( β3o3x    . ) |  6 |  3  0  3 |  *  *  *  * 32  * | 0 1 0 1
sefa( β3o . *b3x ) |  6 |  0  3  3 |  *  *  *  *  * 32 | 0 0 1 1
-------------------+----+----------+-------------------+--------
both( . o3x *b3x )  12 | 12 12  0 |  4  4  6  0  0  0 | 8 * * *
      β3o3x    .    12 | 12  0 12 |  4  0  0  4  4  0 | * 8 * *
      β3o . *b3x    12 |  0 12 12 |  0  4  0  4  0  4 | * * 8 *
sefa( β3o3x *b3x )  24 | 12 12 12 |  0  0  6  0  4  4 | * * * 8

starting figure: x3o3x *b3x

© 2004-2024
top of page