Acronym hixtixhi
Name hecatonicosihexacositruncated hexacosihecatonicosachoron
Circumradius sqrt[10+2 sqrt(5)] = 3.804226
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: gaddid grid idtid qrid tigid tut
hixtixhi 12001200120600
gixathi 01200120120600
& others)
Face vector 7200, 18000, 9120, 960
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron  

As abstract polytope hixtixhi is isomorphic to hixquitixhi, thereby replacing pentagrams by pentagons and interchanging the roles of the decagons and decagrams, respectively replacing gaddid by saddid and tigid by quit sissid.


Incidence matrix according to Dynkin symbol

x3x5x5/2o3*a5/3*c

. . .   .         | 7200 |    2    1    2 |    2    2    1    2    1 |   2   1   1   1
------------------+------+----------------+--------------------------+----------------
x . .   .         |    2 | 7200    *    * |    1    1    1    0    0 |   1   1   1   0
. x .   .         |    2 |    * 3600    * |    2    0    0    2    0 |   2   1   0   1
. . x   .         |    2 |    *    * 7200 |    0    1    0    1    1 |   1   0   1   1
------------------+------+----------------+--------------------------+----------------
x3x .   .         |    6 |    3    3    0 | 2400    *    *    *    * |   1   1   0   0
x . x   . *a5/3*c |   10 |    5    0    5 |    * 1440    *    *    * |   1   0   1   0
x . .   o3*a      |    3 |    3    0    0 |    *    * 2400    *    * |   0   1   1   0
. x5x   .         |   10 |    0    5    5 |    *    *    * 1440    * |   1   0   0   1
. . x5/2o         |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
------------------+------+----------------+--------------------------+----------------
x3x5x   . *a5/3*c   120 |   60   60   60 |   20   12    0   12    0 | 120   *   *   *
x3x .   o3*a         12 |   12    6    0 |    4    0    4    0    0 |   * 600   *   *
x . x5/2o3*a5/3*c    60 |   60    0   60 |    0   12   20    0   12 |   *   * 120   *
. x5x5/2o            60 |    0   30   60 |    0    0    0   12   12 |   *   *   * 120

x3x5x5/3o3/2*a5/3*c

. . .   .           | 7200 |    2    1    2 |    2    2    1    2    1 |   2   1   1   1
--------------------+------+----------------+--------------------------+----------------
x . .   .           |    2 | 7200    *    * |    1    1    1    0    0 |   1   1   1   0
. x .   .           |    2 |    * 3600    * |    2    0    0    2    0 |   2   1   0   1
. . x   .           |    2 |    *    * 7200 |    0    1    0    1    1 |   1   0   1   1
--------------------+------+----------------+--------------------------+----------------
x3x .   .           |    6 |    3    3    0 | 2400    *    *    *    * |   1   1   0   0
x . x   .   *a5/3*c |   10 |    5    0    5 |    * 1440    *    *    * |   1   0   1   0
x . .   o3/2*a      |    3 |    3    0    0 |    *    * 2400    *    * |   0   1   1   0
. x5x   .           |   10 |    0    5    5 |    *    *    * 1440    * |   1   0   0   1
. . x5/3o           |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
--------------------+------+----------------+--------------------------+----------------
x3x5x   .   *a5/3*c   120 |   60   60   60 |   20   12    0   12    0 | 120   *   *   *
x3x .   o3/2*a         12 |   12    6    0 |    4    0    4    0    0 |   * 600   *   *
x . x5/3o3/2*a5/3*c    60 |   60    0   60 |    0   12   20    0   12 |   *   * 120   *
. x5x5/3o              60 |    0   30   60 |    0    0    0   12   12 |   *   *   * 120

© 2004-2024
top of page