Acronym hixtixhi
Name hecatonicosihexacositruncated hexacosihecatonicosachoron
Colonel of regiment (is itself locally convex – uniform polychoral members:
 by cells: gaddid grid idtid qrid tigid tut hixtixhi 120 0 120 0 120 600 gixathi 0 120 0 120 120 600
& others)
External

As abstract polytope hixtixhi is isomorphic to hixquitixhi, thereby replacing pentagrams by pentagons and interchanging the roles of the decagons and decagrams, respectively replacing gaddid by saddid and tigid by quit sissid.

Incidence matrix according to Dynkin symbol

```x3x5x5/2o3*a5/3*c

. . .   .         | 7200 |    2    1    2 |    2    2    1    2    1 |   2   1   1   1
------------------+------+----------------+--------------------------+----------------
x . .   .         |    2 | 7200    *    * |    1    1    1    0    0 |   1   1   1   0
. x .   .         |    2 |    * 3600    * |    2    0    0    2    0 |   2   1   0   1
. . x   .         |    2 |    *    * 7200 |    0    1    0    1    1 |   1   0   1   1
------------------+------+----------------+--------------------------+----------------
x3x .   .         |    6 |    3    3    0 | 2400    *    *    *    * |   1   1   0   0
x . x   . *a5/3*c |   10 |    5    0    5 |    * 1440    *    *    * |   1   0   1   0
x . .   o3*a      |    3 |    3    0    0 |    *    * 2400    *    * |   0   1   1   0
. x5x   .         |   10 |    0    5    5 |    *    *    * 1440    * |   1   0   0   1
. . x5/2o         |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
------------------+------+----------------+--------------------------+----------------
x3x5x   . *a5/3*c ♦  120 |   60   60   60 |   20   12    0   12    0 | 120   *   *   *
x3x .   o3*a      ♦   12 |   12    6    0 |    4    0    4    0    0 |   * 600   *   *
x . x5/2o3*a5/3*c ♦   60 |   60    0   60 |    0   12   20    0   12 |   *   * 120   *
. x5x5/2o         ♦   60 |    0   30   60 |    0    0    0   12   12 |   *   *   * 120
```

```x3x5x5/3o3/2*a5/3*c

. . .   .           | 7200 |    2    1    2 |    2    2    1    2    1 |   2   1   1   1
--------------------+------+----------------+--------------------------+----------------
x . .   .           |    2 | 7200    *    * |    1    1    1    0    0 |   1   1   1   0
. x .   .           |    2 |    * 3600    * |    2    0    0    2    0 |   2   1   0   1
. . x   .           |    2 |    *    * 7200 |    0    1    0    1    1 |   1   0   1   1
--------------------+------+----------------+--------------------------+----------------
x3x .   .           |    6 |    3    3    0 | 2400    *    *    *    * |   1   1   0   0
x . x   .   *a5/3*c |   10 |    5    0    5 |    * 1440    *    *    * |   1   0   1   0
x . .   o3/2*a      |    3 |    3    0    0 |    *    * 2400    *    * |   0   1   1   0
. x5x   .           |   10 |    0    5    5 |    *    *    * 1440    * |   1   0   0   1
. . x5/3o           |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
--------------------+------+----------------+--------------------------+----------------
x3x5x   .   *a5/3*c ♦  120 |   60   60   60 |   20   12    0   12    0 | 120   *   *   *
x3x .   o3/2*a      ♦   12 |   12    6    0 |    4    0    4    0    0 |   * 600   *   *
x . x5/3o3/2*a5/3*c ♦   60 |   60    0   60 |    0   12   20    0   12 |   *   * 120   *
. x5x5/3o           ♦   60 |    0   30   60 |    0    0    0   12   12 |   *   *   * 120
```