| Acronym | ... |
| Name |
dual of uniform n-gonal prism, n-gonal dipyramid |
| |
| Vertex figure | [tn], [T4] |
| Dihedral angles |
|
| Dual | n-gonal prism |
| Especially | m m3o (n=3) oct (n=4) m m5o (n=5) m m6o (n=6) |
| Face vector | n+2, 3n, 2n |
| Confer |
|
|
External links |
|
The triangles {(t,T,T)} have vertex angles t = arccos[1-2 sin4(π/n)] resp. T = arccos[sin2(π/n)].
Note that the term n-gonal dipyramid in general says nothing about the relative ratio of the edge sizes. There are equilateral dipyramids as well, cf. tridpy (n=3), oct (n=4), and pedpy (n=5). – Whereas in here the edge ratio is chosen such as to match their duality to the n-gonal prisms!
Incidence matrix according to Dynkin symbol
m m-n-o =
oxo-n-ooo&#yt → both heights = cos(π/n)/(2 sin2(π/n))
y = 1/(2 sin2(π/n))
o..-n-o.. | 1 * * | n 0 0 | n 0 [tn]
.o.-n-.o. | * n * | 1 2 1 | 2 2 [T4]
..o-n-..o | * * 1 | 0 0 n | 0 n [tn]
-------------+-------+-------+----
oo.-n-oo.&#y | 1 1 0 | n * * | 2 0 y
.x. ... | 0 2 0 | * n * | 1 1 x
.oo-n-.oo&#y | 0 1 1 | * * n | 0 2 y
-------------+-------+-------+----
ox. ...&#y | 1 2 0 | 2 1 0 | n * {(t,T,T)}
.xo ...&#y | 0 2 1 | 0 1 2 | * n {(t,T,T)}
m m-n-o =
ao ox-n-oo&#zy → height = 0
a = cos(π/n)/sin2(π/n)
y = 1/(2 sin2(π/n))
o. o.-n-o. | 2 * | n 0 | n [tn]
.o .o-n-.o | * n | 2 2 | 4 [T4]
--------------+-----+------+---
oo oo-n-oo&#y | 1 1 | 2n * | 2 y
.. .x .. | 0 2 | * n | 2 x
--------------+-----+------+---
.. ox ..&#y | 1 2 | 2 1 | 2n {(t,T,T)}
© 2004-2025 | top of page |