Acronym | qrit |
Name | quasirhombated tesseract |
Cross sections |
© |
Circumradius | sqrt[2-sqrt(2)] = 0.765367 |
Inradius wrt. oct | 1-1/sqrt(2) = 0.292893 |
Inradius wrt. querco | (sqrt(2)-1)/2 = 0.207107 |
Inradius wrt. trip | sqrt[(17-12 sqrt(2))/12] = 0.0495288 |
Coordinates | ((sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2) & all permutations, all changes of sign |
Volume | [32 sqrt(2)-45]/3 = 0.0849447 |
General of army | srit |
Colonel of regiment | wavitoth |
Dihedral angles
(at margins) | |
Face vector | 96, 288, 248, 56 |
Confer |
|
External links |
As abstract polytope qrit is isomorphic to srit, thereby replacing querco by sirco. – As such qrit is a lieutenant.
Incidence matrix according to Dynkin symbol
o3x3o4/3x . . . . | 96 | 4 2 | 2 2 4 1 | 1 2 2 ----------+----+--------+-------------+-------- . x . . | 2 | 192 * | 1 1 1 0 | 1 1 1 . . . x | 2 | * 96 | 0 0 2 1 | 0 1 2 ----------+----+--------+-------------+-------- o3x . . | 3 | 3 0 | 64 * * * | 1 1 0 . x3o . | 3 | 3 0 | * 64 * * | 1 0 1 . x . x | 4 | 2 2 | * * 96 * | 0 1 1 . . o4/3x | 4 | 0 4 | * * * 24 | 0 0 2 ----------+----+--------+-------------+-------- o3x3o . ♦ 6 | 12 0 | 4 4 0 0 | 16 * * o3x . x ♦ 6 | 6 3 | 2 0 3 0 | * 32 * . x3o4/3x ♦ 24 | 24 24 | 0 8 12 6 | * * 8
o3x3/2o4x . . . . | 96 | 4 2 | 2 2 4 1 | 1 2 2 ----------+----+--------+-------------+-------- . x . . | 2 | 192 * | 1 1 1 0 | 1 1 1 . . . x | 2 | * 96 | 0 0 2 1 | 0 1 2 ----------+----+--------+-------------+-------- o3x . . | 3 | 3 0 | 64 * * * | 1 1 0 . x3/2o . | 3 | 3 0 | * 64 * * | 1 0 1 . x . x | 4 | 2 2 | * * 96 * | 0 1 1 . . o4x | 4 | 0 4 | * * * 24 | 0 0 2 ----------+----+--------+-------------+-------- o3x3/2o . ♦ 6 | 12 0 | 4 4 0 0 | 16 * * o3x . x ♦ 6 | 6 3 | 2 0 3 0 | * 32 * . x3/2o4x ♦ 24 | 24 24 | 0 8 12 6 | * * 8
o3/2x3o4/3x . . . . | 96 | 4 2 | 2 2 4 1 | 1 2 2 ------------+----+--------+-------------+-------- . x . . | 2 | 192 * | 1 1 1 0 | 1 1 1 . . . x | 2 | * 96 | 0 0 2 1 | 0 1 2 ------------+----+--------+-------------+-------- o3/2x . . | 3 | 3 0 | 64 * * * | 1 1 0 . x3o . | 3 | 3 0 | * 64 * * | 1 0 1 . x . x | 4 | 2 2 | * * 96 * | 0 1 1 . . o4/3x | 4 | 0 4 | * * * 24 | 0 0 2 ------------+----+--------+-------------+-------- o3/2x3o . ♦ 6 | 12 0 | 4 4 0 0 | 16 * * o3/2x . x ♦ 6 | 6 3 | 2 0 3 0 | * 32 * . x3o4/3x ♦ 24 | 24 24 | 0 8 12 6 | * * 8
o3/2x3/2o4x . . . . | 96 | 4 2 | 2 2 4 1 | 1 2 2 ------------+----+--------+-------------+-------- . x . . | 2 | 192 * | 1 1 1 0 | 1 1 1 . . . x | 2 | * 96 | 0 0 2 1 | 0 1 2 ------------+----+--------+-------------+-------- o3/2x . . | 3 | 3 0 | 64 * * * | 1 1 0 . x3/2o . | 3 | 3 0 | * 64 * * | 1 0 1 . x . x | 4 | 2 2 | * * 96 * | 0 1 1 . . o4x | 4 | 0 4 | * * * 24 | 0 0 2 ------------+----+--------+-------------+-------- o3/2x3/2o . ♦ 6 | 12 0 | 4 4 0 0 | 16 * * o3/2x . x ♦ 6 | 6 3 | 2 0 3 0 | * 32 * . x3/2o4x ♦ 24 | 24 24 | 0 8 12 6 | * * 8
© 2004-2024 | top of page |