Acronym qrit
Name quasirhombated tesseract
Cross sections
 ©
Circumradius sqrt[2-sqrt(2)] = 0.765367
Coordinates ((sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2, 1/2)   & all permutations, all changes of sign
General of army srit
Colonel of regiment wavitoth
External
links
hedrondude   WikiChoron  

As abstract polytope qrit is isomorphic to srit, thereby replacing querco by sirco. – As such qrit is a lieutenant.


Incidence matrix according to Dynkin symbol

o3x3o4/3x

. . .   . | 96 |   4  2 |  2  2  4  1 |  1  2 2
----------+----+--------+-------------+--------
. x .   . |  2 | 192  * |  1  1  1  0 |  1  1 1
. . .   x |  2 |   * 96 |  0  0  2  1 |  0  1 2
----------+----+--------+-------------+--------
o3x .   . |  3 |   3  0 | 64  *  *  * |  1  1 0
. x3o   . |  3 |   3  0 |  * 64  *  * |  1  0 1
. x .   x |  4 |   2  2 |  *  * 96  * |  0  1 1
. . o4/3x |  4 |   0  4 |  *  *  * 24 |  0  0 2
----------+----+--------+-------------+--------
o3x3o   .   6 |  12  0 |  4  4  0  0 | 16  * *
o3x .   x   6 |   6  3 |  2  0  3  0 |  * 32 *
. x3o4/3x  24 |  24 24 |  0  8 12  6 |  *  * 8

o3x3/2o4x

. .   . . | 96 |   4  2 |  2  2  4  1 |  1  2 2
----------+----+--------+-------------+--------
. x   . . |  2 | 192  * |  1  1  1  0 |  1  1 1
. .   . x |  2 |   * 96 |  0  0  2  1 |  0  1 2
----------+----+--------+-------------+--------
o3x   . . |  3 |   3  0 | 64  *  *  * |  1  1 0
. x3/2o . |  3 |   3  0 |  * 64  *  * |  1  0 1
. x   . x |  4 |   2  2 |  *  * 96  * |  0  1 1
. .   o4x |  4 |   0  4 |  *  *  * 24 |  0  0 2
----------+----+--------+-------------+--------
o3x3/2o .   6 |  12  0 |  4  4  0  0 | 16  * *
o3x   . x   6 |   6  3 |  2  0  3  0 |  * 32 *
. x3/2o4x  24 |  24 24 |  0  8 12  6 |  *  * 8

o3/2x3o4/3x

.   . .   . | 96 |   4  2 |  2  2  4  1 |  1  2 2
------------+----+--------+-------------+--------
.   x .   . |  2 | 192  * |  1  1  1  0 |  1  1 1
.   . .   x |  2 |   * 96 |  0  0  2  1 |  0  1 2
------------+----+--------+-------------+--------
o3/2x .   . |  3 |   3  0 | 64  *  *  * |  1  1 0
.   x3o   . |  3 |   3  0 |  * 64  *  * |  1  0 1
.   x .   x |  4 |   2  2 |  *  * 96  * |  0  1 1
.   . o4/3x |  4 |   0  4 |  *  *  * 24 |  0  0 2
------------+----+--------+-------------+--------
o3/2x3o   .   6 |  12  0 |  4  4  0  0 | 16  * *
o3/2x .   x   6 |   6  3 |  2  0  3  0 |  * 32 *
.   x3o4/3x  24 |  24 24 |  0  8 12  6 |  *  * 8

o3/2x3/2o4x

.   .   . . | 96 |   4  2 |  2  2  4  1 |  1  2 2
------------+----+--------+-------------+--------
.   x   . . |  2 | 192  * |  1  1  1  0 |  1  1 1
.   .   . x |  2 |   * 96 |  0  0  2  1 |  0  1 2
------------+----+--------+-------------+--------
o3/2x   . . |  3 |   3  0 | 64  *  *  * |  1  1 0
.   x3/2o . |  3 |   3  0 |  * 64  *  * |  1  0 1
.   x   . x |  4 |   2  2 |  *  * 96  * |  0  1 1
.   .   o4x |  4 |   0  4 |  *  *  * 24 |  0  0 2
------------+----+--------+-------------+--------
o3/2x3/2o .   6 |  12  0 |  4  4  0  0 | 16  * *
o3/2x   . x   6 |   6  3 |  2  0  3  0 |  * 32 *
.   x3/2o4x  24 |  24 24 |  0  8 12  6 |  *  * 8

© 2004-2019
top of page