Acronym | ... |
Name | 2srit (?) |
Circumradius | sqrt[2+sqrt(2)] = 1.847759 |
General of army | srit |
Colonel of regiment | srit |
Confer |
|
Looks like a compound of 2 coincident small rhombated tesseract (srit). And indeed all but the Grünbaumian elements coincide by pairs. It occurs in different types. Type A uses pairs of coincident small rhombicuboctahedra (sirco), while all other cells are doubly covered. Type B uses pairs of coincident triangular prisms (trip), while all other cells are doubly covered.
Incidence matrix according to Dynkin symbol
β3x3o4x (type A) both( . . . . ) | 192 | 2 2 2 | 1 2 1 2 1 2 | 1 1 2 1 ----------------+-----+-------------+-------------------+---------- both( . x . . ) | 2 | 192 * * | 1 1 0 1 0 0 | 1 1 1 0 both( . . . x ) | 2 | * 192 * | 0 1 1 0 0 1 | 1 0 1 1 sefa( β3x . . ) | 2 | * * 192 | 0 0 0 1 1 1 | 0 1 1 1 ----------------+-----+-------------+-------------------+---------- both( . x3o . ) | 3 | 3 0 0 | 64 * * * * * | 1 1 0 0 both( . x . x ) | 4 | 2 2 0 | * 96 * * * * | 1 0 1 0 both( . . o4x ) | 4 | 0 4 0 | * * 48 * * * | 1 0 0 1 β3x . . ♦ 6 | 3 0 3 | * * * 64 * * | 0 1 1 0 sefa( β3x3o . ) | 3 | 0 0 3 | * * * * 64 * | 0 1 0 1 sefa( β3x 2 x ) | 4 | 0 2 2 | * * * * * 96 | 0 0 1 1 ----------------+-----+-------------+-------------------+---------- both( . x3o4x ) ♦ 24 | 24 24 0 | 8 12 6 0 0 0 | 8 * * * β3x3o . ♦ 12 | 12 0 12 | 4 0 0 4 4 0 | * 16 * * β3x 2 x ♦ 12 | 6 6 6 | 0 3 0 2 0 3 | * * 32 * sefa( β3x3o4x ) ♦ 24 | 0 24 24 | 0 0 6 0 8 12 | * * * 8 starting figure: x3x3o4x
o3x3β4x (type B) both( . . . . ) | 192 | 2 1 2 1 | 1 2 2 1 1 2 | 1 1 2 1 ----------------+-----+---------------+-------------------+----------- both( . x . . ) | 2 | 192 * * * | 1 1 1 0 0 0 | 1 1 1 0 both( . . . x ) | 2 | * 96 * * | 0 2 0 1 0 0 | 1 0 2 0 sefa( . x3β . ) | 2 | * * 192 * | 0 0 1 0 1 1 | 0 1 1 1 sefa( . . s4x ) | 2 | * * * 96 | 0 0 0 1 0 2 | 0 0 2 1 ----------------+-----+---------------+-------------------+----------- both( o3x . . ) | 3 | 3 0 0 0 | 64 * * * * * | 1 1 0 0 both( . x . x ) | 4 | 2 2 0 0 | * 96 * * * * | 1 0 1 0 . x3β . ♦ 6 | 3 0 3 0 | * * 64 * * * | 0 1 1 0 both( . . s4x ) ♦ 4 | 0 2 0 2 | * * * 48 * * | 0 0 2 0 sefa( o3x3β . ) | 3 | 0 0 3 0 | * * * * 64 * | 0 1 0 1 sefa( . x3β4x ) | 4 | 0 0 2 2 | * * * * * 96 | 0 0 1 1 ----------------+-----+---------------+-------------------+----------- both( o3x . x ) ♦ 6 | 6 3 0 0 | 2 3 0 0 0 0 | 32 * * * o3x3β . ♦ 12 | 12 0 12 0 | 4 0 4 0 4 0 | * 16 * * . x3β4x ♦ 48 | 24 24 24 24 | 0 12 8 12 0 12 | * * 8 * sefa( o3x3β4x ) ♦ 6 | 0 0 6 3 | 0 0 0 0 2 3 | * * * 32 starting figure: o3x3x4x
o3x3β4β (type B) both( . . . . ) | 192 | 2 2 2 | 1 2 1 1 4 | 1 2 2 ----------------+-----+-------------+-----------------+-------- both( . x . . ) | 2 | 192 * * | 1 1 0 0 1 | 1 1 1 sefa( . x3β . ) | 2 | * 192 * | 0 1 0 1 1 | 1 1 1 sefa( . . s4s ) | 2 | * * 192 | 0 0 1 0 2 | 0 2 1 ----------------+-----+-------------+-----------------+-------- both( o3x . . ) | 3 | 3 0 0 | 64 * * * * | 1 0 1 . x3β . ♦ 6 | 3 3 0 | * 64 * * * | 1 1 0 both( . . s4s ) ♦ 4 | 0 0 4 | * * 48 * * | 0 2 0 sefa( o3x3β . ) | 3 | 0 3 0 | * * * 64 * | 1 0 1 sefa( . x3β4β ) | 4 | 1 1 2 | * * * * 192 | 0 1 1 ----------------+-----+-------------+-----------------+-------- o3x3β . ♦ 12 | 12 12 0 | 4 4 0 4 0 | 16 * * . x3β4β ♦ 48 | 24 24 48 | 0 8 12 0 24 | * 8 * sefa( o3x3β4β ) ♦ 6 | 3 3 3 | 1 0 0 1 3 | * * 64 starting figure: o3x3x4x
© 2004-2025 | top of page |