Acronym coa tutcup, co || tutcup
Name co atop tuta
Circumradius sqrt(3/2) = 1.224745
Lace city
in approx. ASCII-art
   x3o3x   
   A       
           
x3x3o o3x3x
B          
Face vector 36, 132, 162, 81, 17
Confer
uniform relative:
nit  
related segmentotera:
ica tutcup  
related CRFs:
mibdinit  
general polytopal classes:
segmentotera  

This polyteron occurs as the upper part of mibdinit, which in turn chops off 2 rapasrips, as is visible wrt. A3 lace city across-symmetry. (But note that a similar metabidiminished icarit occurs, when considered with C3 lace city across-symmetry, chopping off 2 octacopes and resulting in coarit.)


Incidence matrix according to Dynkin symbol

xxo3oxx3xox&#x   → height(1,2) = height(1,3) = sqrt(5/8) = 0.790569
                   height(2,3) = 1/sqrt(2) = 0.707107
                   height(1,23) = 1/sqrt(2) = 0.707107 (co || tuta)

o..3o..3o..      | 12  * |  4  4  0  0  0 | 2 2  4  2  4  2 0 0  0  0 | 1 2  4 2  4  1 0 0 0 | 2 2 2 0 A
.o.3.o.3.o.    & |  * 24 |  0  2  1  2  2 | 0 0  2  2  1  2 2 1  3  2 | 0 2  1 1  3  2 1 3 1 | 1 3 1 1 B
-----------------+-------+----------------+---------------------------+----------------------+--------
x.. ... ...    & |  2  0 | 24  *  *  *  * | 1 1  1  0  1  0 0 0  0  0 | 1 1  2 1  1  0 0 0 0 | 2 1 1 0
oo.3oo.3oo.&#x & |  1  1 |  * 48  *  *  * | 0 0  1  1  1  1 0 0  0  0 | 0 1  1 1  2  1 0 0 0 | 1 2 2 0
.x. ... ...    & |  0  2 |  *  * 12  *  * | 0 0  2  0  0  0 2 0  2  0 | 0 2  1 0  2  0 1 2 1 | 1 2 1 1
... .x. ...    & |  0  2 |  *  *  * 24  * | 0 0  0  1  0  0 1 1  0  1 | 0 1  0 1  0  1 1 2 0 | 1 2 0 1
.oo3.oo3.oo&#x   |  0  2 |  *  *  *  * 24 | 0 0  0  0  0  1 0 0  2  1 | 0 0  0 0  2  1 0 2 1 | 0 2 1 1
-----------------+-------+----------------+---------------------------+----------------------+--------
x..3o.. ...    & |  3  0 |  3  0  0  0  0 | 8 *  *  *  *  * * *  *  * | 1 1  0 1  0  0 0 0 0 | 2 1 0 0
x.. ... x..      |  4  0 |  4  0  0  0  0 | * 6  *  *  *  * * *  *  * | 1 0  2 0  0  0 0 0 0 | 2 0 1 0
xx. ... ...&#x & |  2  2 |  1  2  1  0  0 | * * 24  *  *  * * *  *  * | 0 1  1 0  1  0 0 0 0 | 1 1 1 0
... ox. ...&#x & |  1  2 |  0  2  0  1  0 | * *  * 24  *  * * *  *  * | 0 1  0 1  0  1 0 0 0 | 1 2 0 0 
... ... xo.&#x & |  2  1 |  1  2  0  0  0 | * *  *  * 24  * * *  *  * | 0 0  1 1  1  0 0 0 0 | 1 1 1 0
ooo3ooo3ooo&#x   |  1  2 |  0  2  0  0  1 | * *  *  *  * 24 * *  *  * | 0 0  0 0  2  1 0 0 0 | 0 2 1 0
.x.3.x. ...    & |  0  6 |  0  0  3  3  0 | * *  *  *  *  * 8 *  *  * | 0 1  0 0  0  0 1 1 0 | 1 1 0 1
... .x.3.o.    & |  0  3 |  0  0  0  3  0 | * *  *  *  *  * * 8  *  * | 0 0  0 1  0  0 1 1 0 | 1 1 0 1
.xo ... ...&#x & |  0  3 |  0  0  1  0  2 | * *  *  *  *  * * * 24  * | 0 0  0 0  1  0 0 1 1 | 0 1 1 1
... .xx ...&#x   |  0  4 |  0  0  0  2  2 | * *  *  *  *  * * *  * 12 | 0 0  0 0  0  1 0 2 0 | 0 2 0 1
-----------------+-------+----------------+---------------------------+----------------------+--------
x..3o..3x..       12  0 | 24  0  0  0  0 | 8 6  0  0  0  0 0 0  0  0 | 1 *  * *  *  * * * * | 2 0 0 0
xx.3ox. ...&#x &   3  6 |  3  6  3  3  0 | 1 0  3  3  0  0 1 0  0  0 | * 8  * *  *  * * * * | 1 1 0 0
xx. ... xo.&#x     4  2 |  4  4  1  0  0 | 0 1  2  0  2  0 0 0  0  0 | * * 12 *  *  * * * * | 1 0 1 0
... ox.3xo.&#x &   3  3 |  3  6  0  3  0 | 1 0  0  3  3  0 0 1  0  0 | * *  * 8  *  * * * * | 1 1 0 0
xxo ... ...&#x &   2  3 |  1  4  1  0  2 | 0 0  1  0  1  2 0 0  1  0 | * *  * * 24  * * * * | 0 1 1 0
... oxx ...&#x     1  4 |  0  4  0  2  2 | 0 0  0  2  0  2 0 0  0  1 | * *  * *  * 12 * * * | 0 2 0 0
.x.3.x.3.o.    &   0 12 |  0  0  6 12  0 | 0 0  0  0  0  0 4 4  0  0 | * *  * *  *  * 2 * * | 1 0 0 1
.xo3.xx ...&#x &   0  9 |  0  0  3  6  6 | 0 0  0  0  0  0 1 1  3  3 | * *  * *  *  * * 8 * | 0 1 0 1
.xo ... .ox&#x     0  4 |  0  0  2  0  4 | 0 0  0  0  0  0 0 0  4  0 | * *  * *  *  * * * 6 | 0 0 1 1
-----------------+-------+----------------+---------------------------+----------------------+--------
xx.3ox.3xo.&#x &  12 12 | 24 24  6 12  0 | 8 6 12 12 12  0 4 4  0  0 | 1 4  6 4  0  0 1 0 0 | 2 * * *
xxo3oxx ...&#x &   3  9 |  3 12  3  6  6 | 1 0  3  6  3  6 1 1  3  3 | 0 1  0 1  3  3 0 1 0 | * 8 * *
xxo ... xox&#x     4  4 |  4  8  2  0  4 | 0 1  4  0  4  4 0 0  4  0 | 0 0  2 0  4  0 0 0 1 | * * 6 *
.xo3.xx3.ox&#x     0 24 |  0  0 12 24 24 | 0 0  0  0  0  0 8 8 24 12 | 0 0  0 0  0  0 2 8 6 | * * * 1

© 2004-2024
top of page