Acronym | sibrant | ||
Name |
small birhombated penteractitriacontiditeron, bicantellated penteract, bicantellated pentacross | ||
Circumradius | sqrt(5) = 2.236068 | ||
Lace city in approx. ASCII-art |
| ||
Vertex figure |
© | ||
Coordinates | (sqrt(2), sqrt(2), 1/sqrt(2), 1/sqrt(2), 0) & all permutations, all changes of sign | ||
Face vector | 480, 1920, 2160, 840, 122 | ||
Confer |
| ||
External links |
Incidence matrix according to Dynkin symbol
o3x3o3x4o . . . . . | 480 | 4 4 | 2 2 8 2 2 | 1 4 4 4 1 | 2 2 2 ----------+-----+---------+---------------------+-------------------+--------- . x . . . | 2 | 960 * | 1 1 2 0 0 | 1 2 2 1 0 | 2 1 1 . . . x . | 2 | * 960 | 0 0 2 1 1 | 0 1 2 2 1 | 1 1 2 ----------+-----+---------+---------------------+-------------------+--------- o3x . . . | 3 | 3 0 | 320 * * * * | 1 2 0 0 0 | 2 1 0 . x3o . . | 3 | 3 0 | * 320 * * * | 1 0 2 0 0 | 2 0 1 . x . x . | 4 | 2 2 | * * 960 * * | 0 1 1 1 0 | 1 1 1 . . o3x . | 3 | 0 3 | * * * 320 * | 0 0 2 0 1 | 1 0 2 . . . x4o | 4 | 0 4 | * * * * 240 | 0 0 0 2 1 | 0 1 2 ----------+-----+---------+---------------------+-------------------+--------- o3x3o . . ♦ 6 | 12 0 | 4 4 0 0 0 | 80 * * * * | 2 0 0 o3x . x . ♦ 6 | 6 3 | 2 0 3 0 0 | * 320 * * * | 1 1 0 . x3o3x . ♦ 12 | 12 12 | 0 4 6 4 0 | * * 160 * * | 1 0 1 . x . x4o ♦ 8 | 4 8 | 0 0 4 0 2 | * * * 240 * | 0 1 1 . . o3x4o ♦ 12 | 0 24 | 0 0 0 8 6 | * * * * 40 | 0 0 2 ----------+-----+---------+---------------------+-------------------+--------- o3x3o3x . ♦ 30 | 60 30 | 20 20 30 10 0 | 5 10 5 0 0 | 32 * * o3x . x4o ♦ 12 | 12 12 | 4 0 12 0 3 | 0 4 0 3 0 | * 80 * . x3o3x4o ♦ 96 | 96 192 | 0 32 96 64 48 | 0 0 16 24 8 | * * 10
o3x3o3x4/3o . . . . . | 480 | 4 4 | 2 2 8 2 2 | 1 4 4 4 1 | 2 2 2 ------------+-----+---------+---------------------+-------------------+--------- . x . . . | 2 | 960 * | 1 1 2 0 0 | 1 2 2 1 0 | 2 1 1 . . . x . | 2 | * 960 | 0 0 2 1 1 | 0 1 2 2 1 | 1 1 2 ------------+-----+---------+---------------------+-------------------+--------- o3x . . . | 3 | 3 0 | 320 * * * * | 1 2 0 0 0 | 2 1 0 . x3o . . | 3 | 3 0 | * 320 * * * | 1 0 2 0 0 | 2 0 1 . x . x . | 4 | 2 2 | * * 960 * * | 0 1 1 1 0 | 1 1 1 . . o3x . | 3 | 0 3 | * * * 320 * | 0 0 2 0 1 | 1 0 2 . . . x4/3o | 4 | 0 4 | * * * * 240 | 0 0 0 2 1 | 0 1 2 ------------+-----+---------+---------------------+-------------------+--------- o3x3o . . ♦ 6 | 12 0 | 4 4 0 0 0 | 80 * * * * | 2 0 0 o3x . x . ♦ 6 | 6 3 | 2 0 3 0 0 | * 320 * * * | 1 1 0 . x3o3x . ♦ 12 | 12 12 | 0 4 6 4 0 | * * 160 * * | 1 0 1 . x . x4/3o ♦ 8 | 4 8 | 0 0 4 0 2 | * * * 240 * | 0 1 1 . . o3x4/3o ♦ 12 | 0 24 | 0 0 0 8 6 | * * * * 40 | 0 0 2 ------------+-----+---------+---------------------+-------------------+--------- o3x3o3x . ♦ 30 | 60 30 | 20 20 30 10 0 | 5 10 5 0 0 | 32 * * o3x . x4/3o ♦ 12 | 12 12 | 4 0 12 0 3 | 0 4 0 3 0 | * 80 * . x3o3x4/3o ♦ 96 | 96 192 | 0 32 96 64 48 | 0 0 16 24 8 | * * 10
x3o3x *b3x3o . . . . . | 480 | 2 2 4 | 1 2 4 1 2 4 2 | 1 2 4 2 2 1 2 | 2 1 2 1 -------------+-----+-------------+-----------------------------+-------------------------+------------ x . . . . | 2 | 480 * * | 1 1 2 0 0 0 0 | 1 2 2 1 0 0 0 | 2 1 1 0 . . x . . | 2 | * 480 * | 0 1 0 1 0 2 0 | 1 0 2 0 2 0 1 | 2 0 1 1 . . . x . | 2 | * * 960 | 0 0 1 0 1 1 1 | 0 1 1 1 1 1 1 | 1 1 1 1 -------------+-----+-------------+-----------------------------+-------------------------+------------ x3o . . . | 3 | 3 0 0 | 160 * * * * * * | 1 2 0 0 0 0 0 | 2 1 0 0 x . x . . | 4 | 2 2 0 | * 240 * * * * * | 1 0 2 0 0 0 0 | 2 0 1 0 x . . x . | 4 | 2 0 2 | * * 480 * * * * | 0 1 1 1 0 0 0 | 1 1 1 0 . o3x . . | 3 | 0 3 0 | * * * 160 * * * | 1 0 0 0 2 0 0 | 2 0 0 1 . o . *b3x . | 3 | 0 0 3 | * * * * 320 * * | 0 1 0 0 1 1 0 | 1 1 0 1 . . x x . | 4 | 0 2 2 | * * * * * 480 * | 0 0 1 0 1 0 1 | 1 0 1 1 . . . x3o | 3 | 0 0 3 | * * * * * * 320 | 0 0 0 1 0 1 1 | 0 1 1 1 -------------+-----+-------------+-----------------------------+-------------------------+------------ x3o3x . . ♦ 12 | 12 12 0 | 4 6 0 4 0 0 0 | 40 * * * * * * | 2 0 0 0 x3o . *b3x . ♦ 12 | 12 0 12 | 4 0 6 0 4 0 0 | * 80 * * * * * | 1 1 0 0 x . x x . ♦ 8 | 4 4 4 | 0 2 2 0 0 2 0 | * * 240 * * * * | 1 0 1 0 x . . x3o ♦ 6 | 3 0 6 | 0 0 3 0 0 0 2 | * * * 160 * * * | 0 1 1 0 . o3x *b3x . ♦ 12 | 0 12 12 | 0 0 0 4 4 6 0 | * * * * 80 * * | 1 0 0 1 . o . *b3x3o ♦ 6 | 0 0 12 | 0 0 0 0 4 0 4 | * * * * * 80 * | 0 1 0 1 . . x x3o ♦ 6 | 0 3 6 | 0 0 0 0 0 3 2 | * * * * * * 160 | 0 0 1 1 -------------+-----+-------------+-----------------------------+-------------------------+------------ x3o3x *b3x . ♦ 96 | 96 96 96 | 32 48 48 32 32 48 0 | 8 8 24 0 8 0 0 | 10 * * * x3o . *b3x3o ♦ 30 | 30 0 60 | 10 0 30 0 20 0 20 | 0 5 0 10 0 5 0 | * 16 * * x . x x3o ♦ 12 | 6 6 12 | 0 3 6 0 0 6 4 | 0 0 3 2 0 0 2 | * * 80 * . o3x *b3x3o ♦ 30 | 0 30 60 | 0 0 0 10 20 30 20 | 0 0 0 0 5 5 10 | * * * 16
o3x3o3x4s demi( . . . . . ) | 480 | 4 2 2 | 2 2 4 1 2 4 1 | 1 2 2 4 1 2 2 | 1 2 2 1 ------------------+-----+-------------+-----------------------------+-------------------------+------------ demi( . x . . . ) | 2 | 960 * * | 1 1 1 0 0 1 0 | 1 1 1 1 0 1 1 | 1 1 1 1 demi( . . . x . ) | 2 | * 480 * | 0 0 2 1 1 0 0 | 0 1 2 2 1 0 0 | 1 1 2 0 sefa( . . . x4s ) | 2 | * * 480 | 0 0 0 0 1 2 1 | 0 0 0 2 1 1 2 | 0 1 2 1 ------------------+-----+-------------+-----------------------------+-------------------------+------------ demi( o3x . . . ) | 3 | 3 0 0 | 320 * * * * * * | 1 1 0 0 0 1 0 | 1 1 0 1 demi( . x3o . . ) | 3 | 3 0 0 | * 320 * * * * * | 1 0 1 0 0 0 1 | 1 0 1 1 demi( . x . x . ) | 4 | 2 2 0 | * * 480 * * * * | 0 1 1 1 0 0 0 | 1 1 1 0 demi( . . o3x . ) | 3 | 0 3 0 | * * * 160 * * * | 0 0 2 0 1 0 0 | 1 0 2 0 . . . x4s | 4 | 0 2 2 | * * * * 240 * * | 0 0 0 2 1 0 0 | 0 1 2 0 sefa( . x 2 x4s ) | 4 | 2 0 2 | * * * * * 480 * | 0 0 0 1 0 1 1 | 0 1 1 1 sefa( . . o3x4s ) | 3 | 0 0 3 | * * * * * * 160 | 0 0 0 0 1 0 2 | 0 0 2 1 ------------------+-----+-------------+-----------------------------+-------------------------+------------ demi( o3x3o . . ) ♦ 6 | 12 0 0 | 4 4 0 0 0 0 0 | 80 * * * * * * | 1 0 0 1 demi( o3x . x . ) ♦ 6 | 6 3 0 | 2 0 3 0 0 0 0 | * 160 * * * * * | 1 1 0 0 demi( . x3o3x . ) ♦ 12 | 12 12 0 | 0 4 6 4 0 0 0 | * * 80 * * * * | 1 0 1 0 . x 2 x4s ♦ 8 | 4 4 4 | 0 0 2 0 2 2 0 | * * * 240 * * * | 0 1 1 0 . . o3x4s ♦ 12 | 0 12 12 | 0 0 0 4 6 0 4 | * * * * 40 * * | 0 0 2 0 sefa( o3x 2 x4s ) ♦ 6 | 6 0 3 | 2 0 0 0 0 3 0 | * * * * * 160 * | 0 1 0 1 sefa( . x3o3x4s ) ♦ 12 | 12 0 12 | 0 4 0 0 0 6 4 | * * * * * * 80 | 0 0 1 1 ------------------+-----+-------------+-----------------------------+-------------------------+------------ demi( o3x3o3x . ) ♦ 30 | 60 30 0 | 20 20 30 10 0 0 0 | 5 10 5 0 0 0 0 | 16 * * * o3x 2 x4s ♦ 12 | 12 6 6 | 4 0 6 0 3 6 0 | 0 2 0 3 0 2 0 | * 80 * * . x3o3x4s ♦ 96 | 96 96 96 | 0 32 48 32 48 48 32 | 0 0 8 24 8 0 8 | * * 10 * sefa( o3x3o3x4s ) ♦ 30 | 60 0 30 | 20 20 0 0 0 30 10 | 5 0 0 0 0 10 5 | * * * 16 starting figure: o3x3o3x4x
© 2004-2025 | top of page |