Acronym quiproh
Name quasiprismatorhombated hexadecachoron
Cross sections
 ©
Circumradius sqrt[4-2 sqrt(2)] = 1.082392
Coordinates ((2 sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: cho co oho quitco quith stop trip
girpith 160080240
quiproh 0160082432
giphado 001688032
)
External
links
hedrondude   WikiChoron  

As abstract polytope quiproh is isomorphic to proh, thereby replacing octagrams by octagons, resp. replacing quith by tic and replacing stop by op.


Incidence matrix according to Dynkin symbol

x3o3x4/3x

. . .   . | 192 |   2   2  1 |  1  2  2  1  2 |  1  1  2 1
----------+-----+------------+----------------+-----------
x . .   . |   2 | 192   *  * |  1  1  1  0  0 |  1  1  1 0
. . x   . |   2 |   * 192  * |  0  1  0  1  1 |  1  0  1 1
. . .   x |   2 |   *   * 96 |  0  0  2  0  2 |  0  1  2 1
----------+-----+------------+----------------+-----------
x3o .   . |   3 |   3   0  0 | 64  *  *  *  * |  1  1  0 0
x . x   . |   4 |   2   2  0 |  * 96  *  *  * |  1  0  1 0
x . .   x |   4 |   2   0  2 |  *  * 96  *  * |  0  1  1 0
. o3x   . |   3 |   0   3  0 |  *  *  * 64  * |  1  0  0 1
. . x4/3x |   8 |   0   4  4 |  *  *  *  * 48 |  0  0  1 1
----------+-----+------------+----------------+-----------
x3o3x   .   12 |  12  12  0 |  4  6  0  4  0 | 16  *  * *
x3o .   x    6 |   6   0  3 |  2  0  3  0  0 |  * 32  * *
x . x4/3x   16 |   8   8  8 |  0  4  4  0  2 |  *  * 24 *
. o3x4/3x   24 |   0  24 12 |  0  0  0  8  6 |  *  *  * 8

x3/2o3/2x4/3x

.   .   .   . | 192 |   2   2  1 |  1  2  2  1  2 |  1  1  2 1
--------------+-----+------------+----------------+-----------
x   .   .   . |   2 | 192   *  * |  1  1  1  0  0 |  1  1  1 0
.   .   x   . |   2 |   * 192  * |  0  1  0  1  1 |  1  0  1 1
.   .   .   x |   2 |   *   * 96 |  0  0  2  0  2 |  0  1  2 1
--------------+-----+------------+----------------+-----------
x3/2o   .   . |   3 |   3   0  0 | 64  *  *  *  * |  1  1  0 0
x   .   x   . |   4 |   2   2  0 |  * 96  *  *  * |  1  0  1 0
x   .   .   x |   4 |   2   0  2 |  *  * 96  *  * |  0  1  1 0
.   o3/2x   . |   3 |   0   3  0 |  *  *  * 64  * |  1  0  0 1
.   .   x4/3x |   8 |   0   4  4 |  *  *  *  * 48 |  0  0  1 1
--------------+-----+------------+----------------+-----------
x3/2o3/2x   .   12 |  12  12  0 |  4  6  0  4  0 | 16  *  * *
x3/2o   .   x    6 |   6   0  3 |  2  0  3  0  0 |  * 32  * *
x   .   x4/3x   16 |   8   8  8 |  0  4  4  0  2 |  *  * 24 *
.   o3/2x4/3x   24 |   0  24 12 |  0  0  0  8  6 |  *  *  * 8

© 2004-2019
top of page