Acronym | quiproh | ||||||||||||||||||||||||||||||||
Name | quasiprismatorhombated hexadecachoron | ||||||||||||||||||||||||||||||||
Cross sections |
© | ||||||||||||||||||||||||||||||||
Circumradius | sqrt[4-2 sqrt(2)] = 1.082392 | ||||||||||||||||||||||||||||||||
Coordinates | ((2 sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign | ||||||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| ||||||||||||||||||||||||||||||||
Face vector | 192, 480, 368, 80 | ||||||||||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||||||||||
External links |
As abstract polytope quiproh is isomorphic to proh, thereby replacing octagrams by octagons, resp. replacing quith by tic and replacing stop by op.
Incidence matrix according to Dynkin symbol
x3o3x4/3x . . . . | 192 | 2 2 1 | 1 2 2 1 2 | 1 1 2 1 ----------+-----+------------+----------------+----------- x . . . | 2 | 192 * * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 192 * | 0 1 0 1 1 | 1 0 1 1 . . . x | 2 | * * 96 | 0 0 2 0 2 | 0 1 2 1 ----------+-----+------------+----------------+----------- x3o . . | 3 | 3 0 0 | 64 * * * * | 1 1 0 0 x . x . | 4 | 2 2 0 | * 96 * * * | 1 0 1 0 x . . x | 4 | 2 0 2 | * * 96 * * | 0 1 1 0 . o3x . | 3 | 0 3 0 | * * * 64 * | 1 0 0 1 . . x4/3x | 8 | 0 4 4 | * * * * 48 | 0 0 1 1 ----------+-----+------------+----------------+----------- x3o3x . ♦ 12 | 12 12 0 | 4 6 0 4 0 | 16 * * * x3o . x ♦ 6 | 6 0 3 | 2 0 3 0 0 | * 32 * * x . x4/3x ♦ 16 | 8 8 8 | 0 4 4 0 2 | * * 24 * . o3x4/3x ♦ 24 | 0 24 12 | 0 0 0 8 6 | * * * 8
x3/2o3/2x4/3x . . . . | 192 | 2 2 1 | 1 2 2 1 2 | 1 1 2 1 --------------+-----+------------+----------------+----------- x . . . | 2 | 192 * * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 192 * | 0 1 0 1 1 | 1 0 1 1 . . . x | 2 | * * 96 | 0 0 2 0 2 | 0 1 2 1 --------------+-----+------------+----------------+----------- x3/2o . . | 3 | 3 0 0 | 64 * * * * | 1 1 0 0 x . x . | 4 | 2 2 0 | * 96 * * * | 1 0 1 0 x . . x | 4 | 2 0 2 | * * 96 * * | 0 1 1 0 . o3/2x . | 3 | 0 3 0 | * * * 64 * | 1 0 0 1 . . x4/3x | 8 | 0 4 4 | * * * * 48 | 0 0 1 1 --------------+-----+------------+----------------+----------- x3/2o3/2x . ♦ 12 | 12 12 0 | 4 6 0 4 0 | 16 * * * x3/2o . x ♦ 6 | 6 0 3 | 2 0 3 0 0 | * 32 * * x . x4/3x ♦ 16 | 8 8 8 | 0 4 4 0 2 | * * 24 * . o3/2x4/3x ♦ 24 | 0 24 12 | 0 0 0 8 6 | * * * 8
© 2004-2025 | top of page |