Acronym quiproh
Name quasiprismatorhombated hexadecachoron
Cross sections
 ©
Circumradius sqrt[4-2 sqrt(2)] = 1.082392
Coordinates ((2 sqrt(2)-1)/2, (sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: cho co oho quitco quith stop trip
girpith 160080240
quiproh 0160082432
giphado 001688032
)
Face vector 192, 480, 368, 80
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron

As abstract polytope quiproh is isomorphic to proh, thereby replacing octagrams by octagons, resp. replacing quith by tic and replacing stop by op.


Incidence matrix according to Dynkin symbol

x3o3x4/3x

. . .   . | 192 |   2   2  1 |  1  2  2  1  2 |  1  1  2 1
----------+-----+------------+----------------+-----------
x . .   . |   2 | 192   *  * |  1  1  1  0  0 |  1  1  1 0
. . x   . |   2 |   * 192  * |  0  1  0  1  1 |  1  0  1 1
. . .   x |   2 |   *   * 96 |  0  0  2  0  2 |  0  1  2 1
----------+-----+------------+----------------+-----------
x3o .   . |   3 |   3   0  0 | 64  *  *  *  * |  1  1  0 0
x . x   . |   4 |   2   2  0 |  * 96  *  *  * |  1  0  1 0
x . .   x |   4 |   2   0  2 |  *  * 96  *  * |  0  1  1 0
. o3x   . |   3 |   0   3  0 |  *  *  * 64  * |  1  0  0 1
. . x4/3x |   8 |   0   4  4 |  *  *  *  * 48 |  0  0  1 1
----------+-----+------------+----------------+-----------
x3o3x   .   12 |  12  12  0 |  4  6  0  4  0 | 16  *  * *
x3o .   x    6 |   6   0  3 |  2  0  3  0  0 |  * 32  * *
x . x4/3x   16 |   8   8  8 |  0  4  4  0  2 |  *  * 24 *
. o3x4/3x   24 |   0  24 12 |  0  0  0  8  6 |  *  *  * 8

x3/2o3/2x4/3x

.   .   .   . | 192 |   2   2  1 |  1  2  2  1  2 |  1  1  2 1
--------------+-----+------------+----------------+-----------
x   .   .   . |   2 | 192   *  * |  1  1  1  0  0 |  1  1  1 0
.   .   x   . |   2 |   * 192  * |  0  1  0  1  1 |  1  0  1 1
.   .   .   x |   2 |   *   * 96 |  0  0  2  0  2 |  0  1  2 1
--------------+-----+------------+----------------+-----------
x3/2o   .   . |   3 |   3   0  0 | 64  *  *  *  * |  1  1  0 0
x   .   x   . |   4 |   2   2  0 |  * 96  *  *  * |  1  0  1 0
x   .   .   x |   4 |   2   0  2 |  *  * 96  *  * |  0  1  1 0
.   o3/2x   . |   3 |   0   3  0 |  *  *  * 64  * |  1  0  0 1
.   .   x4/3x |   8 |   0   4  4 |  *  *  *  * 48 |  0  0  1 1
--------------+-----+------------+----------------+-----------
x3/2o3/2x   .   12 |  12  12  0 |  4  6  0  4  0 | 16  *  * *
x3/2o   .   x    6 |   6   0  3 |  2  0  3  0  0 |  * 32  * *
x   .   x4/3x   16 |   8   8  8 |  0  4  4  0  2 |  *  * 24 *
.   o3/2x4/3x   24 |   0  24 12 |  0  0  0  8  6 |  *  *  * 8

© 2004-2025
top of page