Acronym siphado
Name small prismatohexadecadisoctachoron
Cross sections
 ©
Circumradius sqrt[4+2 sqrt(2)] = 2.613126
Coordinates ((1+2 sqrt(2))/2, (1+sqrt(2))/2, (1+sqrt(2))/2, 1/2)   & all permutations, all changes of sign
General of army proh
Colonel of regiment proh
Face vector 192, 480, 336, 64
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron

As abstract polychoron siphado is isomorphic to giphado, thereby replacing octagons by octagrams, resp. tic by quith and girco by quitco.


Incidence matrix according to Dynkin symbol

x4x3x3o3/2*b

. . . .      | 192 |  1   2   2 |  2  2  2  1  1 | 2 1  1  1
-------------+-----+------------+----------------+----------
x . . .      |   2 | 96   *   * |  2  2  0  0  0 | 2 1  1  0
. x . .      |   2 |  * 192   * |  1  0  1  1  0 | 1 1  0  1
. . x .      |   2 |  *   * 192 |  0  1  1  0  1 | 1 0  1  1
-------------+-----+------------+----------------+----------
x4x . .      |   8 |  4   4   0 | 48  *  *  *  * | 1 1  0  0
x . x .      |   4 |  2   0   2 |  * 96  *  *  * | 1 0  1  0
. x3x .      |   6 |  0   3   3 |  *  * 64  *  * | 1 0  0  1
. x . o3/2*b |   3 |  0   3   0 |  *  *  * 64  * | 0 1  0  1
. . x3o      |   3 |  0   0   3 |  *  *  *  * 64 | 0 0  1  1
-------------+-----+------------+----------------+----------
x4x3x .        48 | 24  24  24 |  6 12  8  0  0 | 8 *  *  *
x4x . o3/2*b   24 | 12  24   0 |  6  0  0  8  0 | * 8  *  *
x . x3o         6 |  3   0   6 |  0  3  0  0  2 | * * 32  *
. x3x3o3/2*b   12 |  0  12  12 |  0  0  4  4  4 | * *  * 16

x4x3x3/2o3*b

. . .   .    | 192 |  1   2   2 |  2  2  2  1  1 | 2 1  1  1
-------------+-----+------------+----------------+----------
x . .   .    |   2 | 96   *   * |  2  2  0  0  0 | 2 1  1  0
. x .   .    |   2 |  * 192   * |  1  0  1  1  0 | 1 1  0  1
. . x   .    |   2 |  *   * 192 |  0  1  1  0  1 | 1 0  1  1
-------------+-----+------------+----------------+----------
x4x .   .    |   8 |  4   4   0 | 48  *  *  *  * | 1 1  0  0
x . x   .    |   4 |  2   0   2 |  * 96  *  *  * | 1 0  1  0
. x3x   .    |   6 |  0   3   3 |  *  * 64  *  * | 1 0  0  1
. x .   o3*b |   3 |  0   3   0 |  *  *  * 64  * | 0 1  0  1
. . x3/2o    |   3 |  0   0   3 |  *  *  *  * 64 | 0 0  1  1
-------------+-----+------------+----------------+----------
x4x3x   .      48 | 24  24  24 |  6 12  8  0  0 | 8 *  *  *
x4x .   o3*b   24 | 12  24   0 |  6  0  0  8  0 | * 8  *  *
x . x3/2o       6 |  3   0   6 |  0  3  0  0  2 | * * 32  *
. x3x3/2o3*b   12 |  0  12  12 |  0  0  4  4  4 | * *  * 16

β3o3x4x

both( . . . . ) | 192 |   2  1   2 |  1  2  1  2  2 | 1  1  1 2
----------------+-----+------------+----------------+----------
both( . . x . ) |   2 | 192  *   * |  1  1  0  1  0 | 1  1  0 1
both( . . . x ) |   2 |   * 96   * |  0  2  0  0  2 | 1  0  1 2
sefa( β3o . . ) |   2 |   *  * 192 |  0  0  1  1  1 | 0  1  1 1
----------------+-----+------------+----------------+----------
both( . o3x . ) |   3 |   3  0   0 | 64  *  *  *  * | 1  1  0 0
both( . . x4x ) |   8 |   4  4   0 |  * 48  *  *  * | 1  0  0 1
      β3o . .      3 |   0  0   3 |  *  * 64  *  * | 0  1  1 0
sefa( β3o3x . ) |   6 |   3  0   3 |  *  *  * 64  * | 0  1  0 1
sefa( β3o 2 x ) |   4 |   0  2   2 |  *  *  *  * 96 | 0  0  1 1
----------------+-----+------------+----------------+----------
both( . o3x4x )   24 |  24 12   0 |  8  6  0  0  0 | 8  *  * *
      β3o3x .     12 |  12  0  12 |  4  0  4  4  0 | * 16  * *
      β3o 2 x      6 |   0  3   6 |  0  0  2  0  3 | *  * 32 *
sefa( β3o3x4x )   48 |  24 24  24 |  0  6  0  8 12 | *  *  * 8

starting figure: x3o3x4x

© 2004-2024
top of page