Acronym | siphado |
Name | small prismatohexadecadisoctachoron |
Cross sections |
© |
Circumradius | sqrt[4+2 sqrt(2)] = 2.613126 |
Coordinates | ((1+2 sqrt(2))/2, (1+sqrt(2))/2, (1+sqrt(2))/2, 1/2) & all permutations, all changes of sign |
General of army | proh |
Colonel of regiment | proh |
Face vector | 192, 480, 336, 64 |
Confer |
|
External links |
As abstract polychoron siphado is isomorphic to giphado, thereby replacing octagons by octagrams, resp. tic by quith and girco by quitco.
Incidence matrix according to Dynkin symbol
x4x3x3o3/2*b . . . . | 192 | 1 2 2 | 2 2 2 1 1 | 2 1 1 1 -------------+-----+------------+----------------+---------- x . . . | 2 | 96 * * | 2 2 0 0 0 | 2 1 1 0 . x . . | 2 | * 192 * | 1 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 192 | 0 1 1 0 1 | 1 0 1 1 -------------+-----+------------+----------------+---------- x4x . . | 8 | 4 4 0 | 48 * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 | * 96 * * * | 1 0 1 0 . x3x . | 6 | 0 3 3 | * * 64 * * | 1 0 0 1 . x . o3/2*b | 3 | 0 3 0 | * * * 64 * | 0 1 0 1 . . x3o | 3 | 0 0 3 | * * * * 64 | 0 0 1 1 -------------+-----+------------+----------------+---------- x4x3x . ♦ 48 | 24 24 24 | 6 12 8 0 0 | 8 * * * x4x . o3/2*b ♦ 24 | 12 24 0 | 6 0 0 8 0 | * 8 * * x . x3o ♦ 6 | 3 0 6 | 0 3 0 0 2 | * * 32 * . x3x3o3/2*b ♦ 12 | 0 12 12 | 0 0 4 4 4 | * * * 16
x4x3x3/2o3*b . . . . | 192 | 1 2 2 | 2 2 2 1 1 | 2 1 1 1 -------------+-----+------------+----------------+---------- x . . . | 2 | 96 * * | 2 2 0 0 0 | 2 1 1 0 . x . . | 2 | * 192 * | 1 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 192 | 0 1 1 0 1 | 1 0 1 1 -------------+-----+------------+----------------+---------- x4x . . | 8 | 4 4 0 | 48 * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 | * 96 * * * | 1 0 1 0 . x3x . | 6 | 0 3 3 | * * 64 * * | 1 0 0 1 . x . o3*b | 3 | 0 3 0 | * * * 64 * | 0 1 0 1 . . x3/2o | 3 | 0 0 3 | * * * * 64 | 0 0 1 1 -------------+-----+------------+----------------+---------- x4x3x . ♦ 48 | 24 24 24 | 6 12 8 0 0 | 8 * * * x4x . o3*b ♦ 24 | 12 24 0 | 6 0 0 8 0 | * 8 * * x . x3/2o ♦ 6 | 3 0 6 | 0 3 0 0 2 | * * 32 * . x3x3/2o3*b ♦ 12 | 0 12 12 | 0 0 4 4 4 | * * * 16
β3o3x4x both( . . . . ) | 192 | 2 1 2 | 1 2 1 2 2 | 1 1 1 2 ----------------+-----+------------+----------------+---------- both( . . x . ) | 2 | 192 * * | 1 1 0 1 0 | 1 1 0 1 both( . . . x ) | 2 | * 96 * | 0 2 0 0 2 | 1 0 1 2 sefa( β3o . . ) | 2 | * * 192 | 0 0 1 1 1 | 0 1 1 1 ----------------+-----+------------+----------------+---------- both( . o3x . ) | 3 | 3 0 0 | 64 * * * * | 1 1 0 0 both( . . x4x ) | 8 | 4 4 0 | * 48 * * * | 1 0 0 1 β3o . . ♦ 3 | 0 0 3 | * * 64 * * | 0 1 1 0 sefa( β3o3x . ) | 6 | 3 0 3 | * * * 64 * | 0 1 0 1 sefa( β3o 2 x ) | 4 | 0 2 2 | * * * * 96 | 0 0 1 1 ----------------+-----+------------+----------------+---------- both( . o3x4x ) ♦ 24 | 24 12 0 | 8 6 0 0 0 | 8 * * * β3o3x . ♦ 12 | 12 0 12 | 4 0 4 4 0 | * 16 * * β3o 2 x ♦ 6 | 0 3 6 | 0 0 2 0 3 | * * 32 * sefa( β3o3x4x ) ♦ 48 | 24 24 24 | 0 6 0 8 12 | * * * 8 starting figure: x3o3x4x
© 2004-2024 | top of page |