Acronym ...
Name β3o3β4x (?)
Circumradius ...

No uniform realisation is possible.


Incidence matrix according to Dynkin symbol

β3o3β4x

both( . . . . ) | 192 |  1   2   2   2   2 |  1  1  2   4  2   4  2 |  1  1  2 1  4
----------------+-----+--------------------+------------------------+--------------
both( . . . x ) |   2 | 96   *   *   *   * |  0  0  2   0  2   2  0 |  0  1  2 1  2
both( s 2 s . ) |   2 |  * 192   *   *   * |  0  0  0   2  0   2  0 |  1  0  1 0  2
sefa( β3o . . ) |   2 |  *   * 192   *   * |  1  0  0   1  1   0  0 |  1  1  0 0  1
sefa( . o3β . ) |   2 |  *   *   * 192   * |  0  1  0   1  0   0  1 |  1  0  0 1  1
sefa( . . s4x ) |   2 |  *   *   *   * 192 |  0  0  1   0  0   1  1 |  0  0  1 1  1
----------------+-----+--------------------+------------------------+--------------
      β3o . .      3 |  0   0   3   0   0 | 64  *  *   *  *   *  * |  1  1  0 0  0
      . o3β .      3 |  0   0   0   3   0 |  * 64  *   *  *   *  * |  1  0  0 1  0
both( . . s4x )    4 |  2   0   0   0   2 |  *  * 96   *  *   *  * |  0  0  1 1  0
sefa( β3o3β . ) |   4 |  0   2   1   1   0 |  *  *  * 192  *   *  * |  1  0  0 0  1
sefa( β3o 2 x ) |   4 |  2   0   2   0   0 |  *  *  *   * 96   *  * |  0  1  0 0  1
sefa( s 2 s4x ) |   4 |  1   2   0   0   1 |  *  *  *   *  * 192  * |  0  0  1 0  1
sefa( . o3β4x ) |   4 |  0   0   0   2   2 |  *  *  *   *  *   * 96 |  0  0  0 1  1
----------------+-----+--------------------+------------------------+--------------
      β3o3β .     12 |  0  12  12  12   0 |  4  4  0  12  0   0  0 | 16  *  * *  *
      β3o 2 x      6 |  3   0   6   0   0 |  2  0  0   0  3   0  0 |  * 32  * *  *
both( s 2 s4x )    8 |  4   4   0   0   4 |  0  0  2   0  0   4  0 |  *  * 48 *  *
      . o3β4x     24 | 12   0   0  24  24 |  0  8 12   0  0   0 12 |  *  *  * 8  *
sefa( β3o3β4x )    8 |  2   4   2   2   2 |  0  0  0   2  1   2  1 |  *  *  * * 96

starting figure: x3o3x4x

© 2004-2019
top of page