Acronym | pysnic |
Name |
pyritosnub cube, pyritohedral sirco variant, edge-alternated girco |
Circumradius | sqrt[13+6 sqrt(2)]/2 = 2.317611 |
Snub derivation |
|
Face vector | 24, 48, 26 |
Confer |
|
External links |
This polyhedron is being obtained as mere vertex alternation, i.e. as snubbing without subsequent resizement, when being applied to girco. Here the edge size ratios are x : h : w = 1 : sqrt(3) : 1+sqrt(2). The uniform variant of this polyhedron however is the sirco (then with ratios 1 : 1 : 1). Note that a further polyhedron with this same combinatoric topology, but again different edge ratios, occurs when the id would be diminished at the vertices of an inscribed oct. That one then (xfF fFx Fxf&#zx) would use edge ratios x : x : f = 1 : 1 : (1+sqrt(5))/2 instead. A further one, again with different edge ratios, would occur as faceting of tigid. That one then (xfV fVx Vxf&#zq) would use edge size ratios x : q : f = 1 : sqrt(2) : (1+sqrt(5))/2 instead.
Incidence matrix according to Dynkin symbol
xwX wXx Xxw&#zh → height = 0 X = x+2q = q+w o.. o.. o.. | 8 * * | 1 1 1 1 0 0 0 0 0 | 1 1 1 1 0 0 0 .o. .o. .o. | * 8 * | 0 0 1 0 1 1 1 0 0 | 0 1 0 1 1 1 0 ..o ..o ..o | * * 8 | 0 0 0 1 0 0 1 1 1 | 0 0 1 1 0 1 1 ---------------+-------+-------------------+-------------- x.. ... ... | 2 0 0 | 4 * * * * * * * * | 1 1 0 0 0 0 0 ... w.. ... | 2 0 0 | * 4 * * * * * * * | 1 0 1 0 0 0 0 oo. oo. oo.&#h | 1 1 0 | * * 8 * * * * * * | 0 1 0 1 0 0 0 o.o o.o o.o&#h | 1 0 1 | * * * 8 * * * * * | 0 0 1 1 0 0 0 .w. ... ... | 0 2 0 | * * * * 4 * * * * | 0 1 0 0 1 0 0 ... ... .x. | 0 2 0 | * * * * * 4 * * * | 0 0 0 0 1 1 0 .oo .oo .oo&#h | 0 1 1 | * * * * * * 8 * * | 0 0 0 1 0 1 0 ... ..x ... | 0 0 2 | * * * * * * * 4 * | 0 0 1 0 0 0 1 ... ... ..w | 0 0 2 | * * * * * * * * 4 | 0 0 0 0 0 1 1 ---------------+-------+-------------------+-------------- x.. w.. ... | 4 0 0 | 2 2 0 0 0 0 0 0 0 | 2 * * * * * * xw. ... ...&#h | 2 2 0 | 1 0 2 0 1 0 0 0 0 | * 4 * * * * * ... w.x ...&#h | 2 0 2 | 0 1 0 2 0 0 0 1 0 | * * 4 * * * * ooo ooo ooo&#h | 1 1 1 | 0 0 1 1 0 0 1 0 0 | * * * 8 * * * .w. ... .x. | 0 4 0 | 0 0 0 0 2 2 0 0 0 | * * * * 2 * * ... ... .xw&#h | 0 2 2 | 0 0 0 0 0 1 2 0 1 | * * * * * 4 * ... ..x ..w | 0 0 4 | 0 0 0 0 0 0 0 2 2 | * * * * * * 2
or o.. o.. o.. & | 24 | 1 1 2 | 1 2 1 -----------------+----+----------+------- x.. ... ... & | 2 | 12 * * | 1 1 0 ... w.. ... & | 2 | * 12 * | 1 1 0 oo. ... ...&#h & | 2 | * * 24 | 0 1 1 -----------------+----+----------+------- x.. w.. ... & | 4 | 2 2 0 | 6 * * xw. ... ...&#h & | 4 | 1 1 2 | * 12 * ooo ooo ooo&#h | 3 | 0 0 3 | * * 8
s3s4x demi( . . . ) | 24 | 1 2 1 | 1 1 2 --------------+----+----------+------- demi( . . x ) | 2 | 12 * * | 0 1 1 x sefa( s3s . ) | 2 | * 24 * | 1 0 1 h sefa( . s4x ) | 2 | * * 12 | 0 1 1 w --------------+----+----------+------- s3s . ♦ 3 | 0 3 0 | 8 * * h3o . s4x ♦ 4 | 2 0 2 | * 6 * x2w sefa( s3s4x ) | 4 | 1 2 1 | * * 12 xw&#h starting figure: x3x4x
© 2004-2024 | top of page |