Acronym | tetgittith |
Name | (tet,gittith)-duoprism |
Circumradius | sqrt[(15-4 sqrt(2))/8] = 1.080691 |
Face vector | 256, 1152, 2016, 1776, 932, 270, 36 |
Confer |
|
As abstract polytope tetgittith is isomorphic to tetsteth, thereby replacing octagrams by octagons, resp. stop by op and gocco by socco, resp. tistodip by todip, goccope by soccope and gittith by steth, resp. stotet by otet, tragocco by trasocco and gittithip by stethip, resp. tetgocco by tetsocco and tragittith by trasteth.
Incidence matrix according to Dynkin symbol
x3o3o o3o3x4/3x4*e . . . . . . . | 256 | 3 3 3 | 3 9 9 3 3 3 | 1 9 9 9 9 9 1 1 3 | 3 3 9 9 9 3 3 9 1 | 3 3 3 3 3 9 3 | 1 1 3 3 -------------------+-----+-------------+------------------------+---------------------------------+-----------------------------+---------------------+--------- x . . . . . . | 2 | 384 * * | 2 3 3 0 0 0 | 1 6 6 3 3 3 0 0 0 | 3 3 6 6 6 1 1 3 0 | 3 3 3 2 2 6 1 | 1 1 3 2 . . . . . x . | 2 | * 384 * | 0 3 0 2 0 1 | 0 3 0 6 0 3 1 0 2 | 1 0 6 0 3 3 0 6 1 | 2 0 1 3 0 6 3 | 1 0 2 3 . . . . . . x | 2 | * * 384 | 0 0 3 0 2 1 | 0 0 3 0 6 3 0 1 2 | 0 1 0 6 3 0 3 6 1 | 0 2 1 0 3 6 3 | 0 1 2 3 -------------------+-----+-------------+------------------------+---------------------------------+-----------------------------+---------------------+--------- x3o . . . . . | 3 | 3 0 0 | 256 * * * * * | 1 3 3 0 0 0 0 0 0 | 3 3 3 3 3 0 0 0 0 | 3 3 3 1 1 3 0 | 1 1 3 1 x . . . . x . | 4 | 2 2 0 | * 576 * * * * | 0 2 0 2 0 1 0 0 0 | 1 0 4 0 2 1 0 2 0 | 2 0 1 2 0 4 1 | 1 0 2 2 x . . . . . x | 4 | 2 0 2 | * * 576 * * * | 0 0 2 0 2 1 0 0 0 | 0 1 0 4 2 0 1 2 0 | 0 2 1 0 2 4 1 | 0 1 2 2 . . . . o3x . | 3 | 0 3 0 | * * * 256 * * | 0 0 0 3 0 0 1 0 1 | 0 0 3 0 0 3 0 3 1 | 1 0 0 3 0 3 3 | 1 0 1 3 . . . . o . x4*e | 4 | 0 0 4 | * * * * 192 * | 0 0 0 0 3 0 0 1 1 | 0 0 0 3 0 0 3 3 1 | 0 1 0 0 3 3 3 | 0 1 1 3 . . . . . x4/3x | 8 | 0 4 4 | * * * * * 96 | 0 0 0 0 0 3 0 0 2 | 0 0 0 0 3 0 0 6 1 | 0 0 1 0 0 6 3 | 0 0 2 3 -------------------+-----+-------------+------------------------+---------------------------------+-----------------------------+---------------------+--------- x3o3o . . . . ♦ 4 | 6 0 0 | 4 0 0 0 0 0 | 64 * * * * * * * * | 3 3 0 0 0 0 0 0 0 | 3 3 3 0 0 0 0 | 1 1 3 0 x3o . . . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | * 384 * * * * * * * | 1 0 2 0 1 0 0 0 0 | 2 0 1 1 0 2 0 | 1 0 2 1 x3o . . . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * * 384 * * * * * * | 0 1 0 2 1 0 0 0 0 | 0 2 1 0 1 2 0 | 0 1 2 1 x . . . o3x . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * * 384 * * * * * | 0 0 2 0 0 1 0 1 0 | 1 0 0 2 0 2 1 | 1 0 1 2 x . . . o . x4*e ♦ 8 | 4 0 8 | 0 0 4 0 2 0 | * * * * 288 * * * * | 0 0 0 2 0 0 1 1 0 | 0 1 0 0 2 2 1 | 0 1 1 2 x . . . . x4/3x ♦ 16 | 8 8 8 | 0 4 4 0 0 2 | * * * * * 144 * * * | 0 0 0 0 2 0 0 2 0 | 0 0 1 0 0 4 1 | 0 0 2 2 . . . o3o3x . ♦ 4 | 0 6 0 | 0 0 0 4 0 0 | * * * * * * 64 * * | 0 0 0 0 0 3 0 0 1 | 0 0 0 3 0 0 3 | 1 0 0 3 . . . o3o . x4*e ♦ 8 | 0 0 12 | 0 0 0 0 6 0 | * * * * * * * 32 * | 0 0 0 0 0 0 3 0 1 | 0 0 0 0 3 0 3 | 0 1 0 3 . . . . o3x4/3x4*e ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * * * * 32 | 0 0 0 0 0 0 0 3 1 | 0 0 0 0 0 3 3 | 0 0 1 3 -------------------+-----+-------------+------------------------+---------------------------------+-----------------------------+---------------------+--------- x3o3o . . x . ♦ 8 | 12 4 0 | 8 6 0 0 0 0 | 2 4 0 0 0 0 0 0 0 | 96 * * * * * * * * | 2 0 1 0 0 0 0 | 1 0 2 0 x3o3o . . . x ♦ 8 | 12 0 4 | 8 0 6 0 0 0 | 2 0 4 0 0 0 0 0 0 | * 96 * * * * * * * | 0 2 1 0 0 0 0 | 0 1 2 0 x3o . . o3x . ♦ 9 | 9 9 0 | 3 9 0 3 0 0 | 0 3 0 3 0 0 0 0 0 | * * 256 * * * * * * | 1 0 0 1 0 1 0 | 1 0 1 1 x3o . . o . x4*e ♦ 12 | 12 0 12 | 4 0 12 0 3 0 | 0 0 4 0 3 0 0 0 0 | * * * 192 * * * * * | 0 1 0 0 1 1 0 | 0 1 1 1 x3o . . . x4/3x ♦ 24 | 24 12 12 | 8 12 12 0 0 3 | 0 4 4 0 0 3 0 0 0 | * * * * 96 * * * * | 0 0 1 0 0 2 0 | 0 0 2 1 x . . o3o3x . ♦ 8 | 4 12 0 | 0 6 0 8 0 0 | 0 0 0 4 0 0 2 0 0 | * * * * * 96 * * * | 0 0 0 2 0 0 1 | 1 0 0 2 x . . o3o . x4*e ♦ 16 | 8 0 24 | 0 0 12 0 12 0 | 0 0 0 0 6 0 0 2 0 | * * * * * * 48 * * | 0 0 0 0 2 0 1 | 0 1 0 2 x . . . o3x4/3x4*e ♦ 48 | 24 48 48 | 0 24 24 16 12 12 | 0 0 0 8 6 6 0 0 2 | * * * * * * * 48 * | 0 0 0 0 0 2 1 | 0 0 1 2 . . . o3o3x4/3x4*e ♦ 64 | 0 96 96 | 0 0 0 64 48 24 | 0 0 0 0 0 0 16 8 8 | * * * * * * * * 4 | 0 0 0 0 0 0 3 | 0 0 0 3 -------------------+-----+-------------+------------------------+---------------------------------+-----------------------------+---------------------+--------- x3o3o . o3x . ♦ 12 | 18 12 0 | 12 18 0 4 0 0 | 3 12 0 6 0 0 0 0 0 | 3 0 4 0 0 0 0 0 0 | 64 * * * * * * | 1 0 1 0 x3o3o . o . x4*e ♦ 16 | 24 0 16 | 16 0 24 0 4 0 | 4 0 16 0 6 0 0 0 0 | 0 4 0 4 0 0 0 0 0 | * 48 * * * * * | 0 1 1 0 x3o3o . . x4/3x ♦ 32 | 48 16 16 | 32 24 24 0 0 4 | 8 16 16 0 0 6 0 0 0 | 4 4 0 0 4 0 0 0 0 | * * 24 * * * * | 0 0 2 0 x3o . o3o3x . ♦ 12 | 12 18 0 | 4 18 0 12 0 0 | 0 6 0 12 0 0 3 0 0 | 0 0 4 0 0 3 0 0 0 | * * * 64 * * * | 1 0 0 1 x3o . o3o . x4*e ♦ 24 | 24 0 36 | 8 0 36 0 18 0 | 0 0 12 0 18 0 0 3 0 | 0 0 0 6 0 0 3 0 0 | * * * * 32 * * | 0 1 0 1 x3o . . o3x4/3x4*e ♦ 72 | 72 72 72 | 24 72 72 24 18 18 | 0 24 24 24 18 18 0 0 3 | 0 0 8 6 6 0 0 3 0 | * * * * * 32 * | 0 0 1 1 x . . o3o3x4/3x4*e ♦ 128 | 64 192 192 | 0 96 96 128 96 48 | 0 0 0 64 48 24 32 16 16 | 0 0 0 0 0 16 8 8 2 | * * * * * * 6 | 0 0 0 2 -------------------+-----+-------------+------------------------+---------------------------------+-----------------------------+---------------------+--------- x3o3o o3o3x . ♦ 16 | 24 24 0 | 16 36 0 16 0 0 | 4 24 0 24 0 0 4 0 0 | 6 0 16 0 0 6 0 0 0 | 4 0 0 4 0 0 0 | 16 * * * x3o3o o3o . x4*e ♦ 32 | 48 0 48 | 32 0 72 0 24 0 | 8 0 48 0 36 0 0 4 0 | 0 12 0 24 0 0 6 0 0 | 0 6 0 0 4 0 0 | * 8 * * x3o3o . o3x4/3x4*e ♦ 96 | 144 96 96 | 96 144 144 32 24 24 | 24 96 96 48 36 36 0 0 4 | 24 24 32 24 24 0 0 6 0 | 8 6 6 0 0 4 0 | * * 8 * x3o . o3o3x4/3x4*e ♦ 192 | 192 288 288 | 64 288 288 192 144 72 | 0 96 96 192 144 72 48 24 24 | 0 0 64 48 24 48 24 24 3 | 0 0 0 16 8 8 3 | * * * 4
© 2004-2025 | top of page |