Acronym tetgocco
Name (tet,gocco)-duoprism
Circumradius sqrt[(13-4 sqrt(2))/8] = 0.958067
Face vector 96, 336, 464, 340, 134, 24
Confer
general polytopal classes:
Wythoffian polypeta  

As abstract polytope tetgocco is isomorphic to tetsocco, thereby replacing octagrams by octagons, resp. stop by op and gocco by socco, resp. tistodip by todip and goccope by soccope, resp. stotet by otet and tragocco by trasocco.


Incidence matrix according to Dynkin symbol

x3o3o o3x4/3x4*d

. . . . .   .    | 96 |   3  2  2 |  3   6   6  1  1  2 |  1  6  6  3  3  6 1 |  2  2  3  3  6 3 | 1 1 2 3
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x . . . .   .    |  2 | 144  *  * |  2   2   2  0  0  0 |  1  4  4  1  1  2 0 |  2  2  2  2  4 1 | 1 1 2 2
. . . . x   .    |  2 |   * 96  * |  0   3   0  1  0  1 |  0  3  0  3  0  3 1 |  1  0  3  0  3 3 | 1 0 1 3
. . . . .   x    |  2 |   *  * 96 |  0   0   3  0  1  1 |  0  0  3  0  3  3 1 |  0  1  0  3  3 3 | 0 1 1 3
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x3o . . .   .    |  3 |   3  0  0 | 96   *   *  *  *  * |  1  2  2  0  0  0 0 |  2  2  1  1  2 0 | 1 1 2 1
x . . . x   .    |  4 |   2  2  0 |  * 144   *  *  *  * |  0  2  0  1  0  1 0 |  1  0  2  0  2 1 | 1 0 1 2
x . . . .   x    |  4 |   2  0  2 |  *   * 144  *  *  * |  0  0  2  0  1  1 0 |  0  1  0  2  2 1 | 0 1 1 2
. . . o3x   .    |  3 |   0  3  0 |  *   *   * 32  *  * |  0  0  0  3  0  0 1 |  0  0  3  0  0 3 | 1 0 0 3
. . . o .   x4*d |  4 |   0  0  4 |  *   *   *  * 24  * |  0  0  0  0  3  0 1 |  0  0  0  3  0 3 | 0 1 0 3
. . . . x4/3x    |  8 |   0  4  4 |  *   *   *  *  * 24 |  0  0  0  0  0  3 1 |  0  0  0  0  3 3 | 0 0 1 3
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x3o3o . .   .      4 |   6  0  0 |  4   0   0  0  0  0 | 24  *  *  *  *  * * |  2  2  0  0  0 0 | 1 1 2 0
x3o . . x   .      6 |   6  3  0 |  2   3   0  0  0  0 |  * 96  *  *  *  * * |  1  0  1  0  1 0 | 1 0 1 1
x3o . . .   x      6 |   6  0  3 |  2   0   3  0  0  0 |  *  * 96  *  *  * * |  0  1  0  1  1 0 | 0 1 1 1
x . . o3x   .      6 |   3  6  0 |  0   3   0  2  0  0 |  *  *  * 48  *  * * |  0  0  2  0  0 1 | 1 0 0 2
x . . o .   x4*d   8 |   4  0  8 |  0   0   4  0  2  0 |  *  *  *  * 36  * * |  0  0  0  2  0 1 | 0 1 0 2
x . . . x4/3x     16 |   8  8  8 |  0   4   4  0  0  2 |  *  *  *  *  * 36 * |  0  0  0  0  2 1 | 0 0 1 2
. . . o3x4/3x4*d  24 |   0 24 24 |  0   0   0  8  6  6 |  *  *  *  *  *  * 4 |  0  0  0  0  0 3 | 0 0 0 3
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x3o3o . x   .      8 |  12  4  0 |  8   6   0  0  0  0 |  2  4  0  0  0  0 0 | 24  *  *  *  * * | 1 0 1 0
x3o3o . .   x      8 |  12  0  4 |  8   0   6  0  0  0 |  2  0  4  0  0  0 0 |  * 24  *  *  * * | 0 1 1 0
x3o . o3x   .      9 |   9  9  0 |  3   9   0  3  0  0 |  0  3  0  3  0  0 0 |  *  * 32  *  * * | 1 0 0 1
x3o . o .   x4*d  12 |  12  0 12 |  4   0  12  0  3  0 |  0  0  4  0  3  0 0 |  *  *  * 24  * * | 0 1 0 1
x3o . . x4/3x     24 |  24 12 12 |  8  12  12  0  0  3 |  0  4  4  0  0  3 0 |  *  *  *  * 24 * | 0 0 1 1
x . . o3x4/3x4*d  48 |  24 48 48 |  0  24  24 16 12 12 |  0  0  0  8  6  6 2 |  *  *  *  *  * 6 | 0 0 0 2
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x3o3o o3x   .     12 |  18 12  0 | 12  18   0  4  0  0 |  3 12  0  6  0  0 0 |  3  0  4  0  0 0 | 8 * * *
x3o3o o .   x4*d  16 |  24  0 16 | 16   0  24  0  4  0 |  4  0 16  0  6  0 0 |  0  4  0  4  0 0 | * 6 * *
x3o3o . x4/3x     32 |  48 16 16 | 32  24  24  0  0  4 |  8 16 16  0  0  6 0 |  4  4  0  0  4 0 | * * 6 *
x3o . o3x4/3x4*d  72 |  72 72 72 | 24  72  72 24 18 18 |  0 24 24 24 18 18 3 |  0  0  8  6  6 3 | * * * 4

© 2004-2025
top of page