Acronym tetgocco Name (tet,gocco)-duoprism Circumradius sqrt[(13-4 sqrt(2))/8] = 0.958067

As abstract polytope tetgocco is isomorphic to tetsocco, thereby replacing octagrams by octagons, resp. stop by op and gocco by socco, resp. tistodip by todip and goccope by soccope, resp. stotet by otet and tragocco by trasocco.

Incidence matrix according to Dynkin symbol

```x3o3o o3x4/3x4*d

. . . . .   .    | 96 |   3  2  2 |  3   6   6  1  1  2 |  1  6  6  3  3  6 1 |  2  2  3  3  6 3 | 1 1 2 3
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x . . . .   .    |  2 | 144  *  * |  2   2   2  0  0  0 |  1  4  4  1  1  2 0 |  2  2  2  2  4 1 | 1 1 2 2
. . . . x   .    |  2 |   * 96  * |  0   3   0  1  0  1 |  0  3  0  3  0  3 1 |  1  0  3  0  3 3 | 1 0 1 3
. . . . .   x    |  2 |   *  * 96 |  0   0   3  0  1  1 |  0  0  3  0  3  3 1 |  0  1  0  3  3 3 | 0 1 1 3
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x3o . . .   .    |  3 |   3  0  0 | 96   *   *  *  *  * |  1  2  2  0  0  0 0 |  2  2  1  1  2 0 | 1 1 2 1
x . . . x   .    |  4 |   2  2  0 |  * 144   *  *  *  * |  0  2  0  1  0  1 0 |  1  0  2  0  2 1 | 1 0 1 2
x . . . .   x    |  4 |   2  0  2 |  *   * 144  *  *  * |  0  0  2  0  1  1 0 |  0  1  0  2  2 1 | 0 1 1 2
. . . o3x   .    |  3 |   0  3  0 |  *   *   * 32  *  * |  0  0  0  3  0  0 1 |  0  0  3  0  0 3 | 1 0 0 3
. . . o .   x4*d |  4 |   0  0  4 |  *   *   *  * 24  * |  0  0  0  0  3  0 1 |  0  0  0  3  0 3 | 0 1 0 3
. . . . x4/3x    |  8 |   0  4  4 |  *   *   *  *  * 24 |  0  0  0  0  0  3 1 |  0  0  0  0  3 3 | 0 0 1 3
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x3o3o . .   .    ♦  4 |   6  0  0 |  4   0   0  0  0  0 | 24  *  *  *  *  * * |  2  2  0  0  0 0 | 1 1 2 0
x3o . . x   .    ♦  6 |   6  3  0 |  2   3   0  0  0  0 |  * 96  *  *  *  * * |  1  0  1  0  1 0 | 1 0 1 1
x3o . . .   x    ♦  6 |   6  0  3 |  2   0   3  0  0  0 |  *  * 96  *  *  * * |  0  1  0  1  1 0 | 0 1 1 1
x . . o3x   .    ♦  6 |   3  6  0 |  0   3   0  2  0  0 |  *  *  * 48  *  * * |  0  0  2  0  0 1 | 1 0 0 2
x . . o .   x4*d ♦  8 |   4  0  8 |  0   0   4  0  2  0 |  *  *  *  * 36  * * |  0  0  0  2  0 1 | 0 1 0 2
x . . . x4/3x    ♦ 16 |   8  8  8 |  0   4   4  0  0  2 |  *  *  *  *  * 36 * |  0  0  0  0  2 1 | 0 0 1 2
. . . o3x4/3x4*d ♦ 24 |   0 24 24 |  0   0   0  8  6  6 |  *  *  *  *  *  * 4 |  0  0  0  0  0 3 | 0 0 0 3
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x3o3o . x   .    ♦  8 |  12  4  0 |  8   6   0  0  0  0 |  2  4  0  0  0  0 0 | 24  *  *  *  * * | 1 0 1 0
x3o3o . .   x    ♦  8 |  12  0  4 |  8   0   6  0  0  0 |  2  0  4  0  0  0 0 |  * 24  *  *  * * | 0 1 1 0
x3o . o3x   .    ♦  9 |   9  9  0 |  3   9   0  3  0  0 |  0  3  0  3  0  0 0 |  *  * 32  *  * * | 1 0 0 1
x3o . o .   x4*d ♦ 12 |  12  0 12 |  4   0  12  0  3  0 |  0  0  4  0  3  0 0 |  *  *  * 24  * * | 0 1 0 1
x3o . . x4/3x    ♦ 24 |  24 12 12 |  8  12  12  0  0  3 |  0  4  4  0  0  3 0 |  *  *  *  * 24 * | 0 0 1 1
x . . o3x4/3x4*d ♦ 48 |  24 48 48 |  0  24  24 16 12 12 |  0  0  0  8  6  6 2 |  *  *  *  *  * 6 | 0 0 0 2
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x3o3o o3x   .    ♦ 12 |  18 12  0 | 12  18   0  4  0  0 |  3 12  0  6  0  0 0 |  3  0  4  0  0 0 | 8 * * *
x3o3o o .   x4*d ♦ 16 |  24  0 16 | 16   0  24  0  4  0 |  4  0 16  0  6  0 0 |  0  4  0  4  0 0 | * 6 * *
x3o3o . x4/3x    ♦ 32 |  48 16 16 | 32  24  24  0  0  4 |  8 16 16  0  0  6 0 |  4  4  0  0  4 0 | * * 6 *
x3o . o3x4/3x4*d ♦ 72 |  72 72 72 | 24  72  72 24 18 18 |  0 24 24 24 18 18 3 |  0  0  8  6  6 3 | * * * 4
```