Acronym tetsocco
Name (tet,socco)-duoprism
Circumradius sqrt[(13+4 sqrt(2))/8] = 1.527124
Face vector 96, 336, 464, 340, 134, 24
Confer
general polytopal classes:
Wythoffian polypeta  

As abstract polytope tetsocco is isomorphic to tetgocco, thereby replacing octagons by octagrams, resp. op by stop and socco by gocco, resp. todip by tistodip and soccope by goccope, resp. otet by stotet and trasocco by tragocco.


Incidence matrix according to Dynkin symbol

x3o3o o3x4x4/3*d

. . . . . .      | 96 |   3  2  2 |  3   6   6  1  1  2 |  1  6  6  3  3  6 1 |  2  2  3  3  6 3 | 1 1 2 3
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x . . . . .      |  2 | 144  *  * |  2   2   2  0  0  0 |  1  4  4  1  1  2 0 |  2  2  2  2  4 1 | 1 1 2 2
. . . . x .      |  2 |   * 96  * |  0   3   0  1  0  1 |  0  3  0  3  0  3 1 |  1  0  3  0  3 3 | 1 0 1 3
. . . . . x      |  2 |   *  * 96 |  0   0   3  0  1  1 |  0  0  3  0  3  3 1 |  0  1  0  3  3 3 | 0 1 1 3
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x3o . . . .      |  3 |   3  0  0 | 96   *   *  *  *  * |  1  2  2  0  0  0 0 |  2  2  1  1  2 0 | 1 1 2 1
x . . . x .      |  4 |   2  2  0 |  * 144   *  *  *  * |  0  2  0  1  0  1 0 |  1  0  2  0  2 1 | 1 0 1 2
x . . . . x      |  4 |   2  0  2 |  *   * 144  *  *  * |  0  0  2  0  1  1 0 |  0  1  0  2  2 1 | 0 1 1 2
. . . o3x .      |  3 |   0  3  0 |  *   *   * 32  *  * |  0  0  0  3  0  0 1 |  0  0  3  0  0 3 | 1 0 0 3
. . . o . x4/3*d |  4 |   0  0  4 |  *   *   *  * 24  * |  0  0  0  0  3  0 1 |  0  0  0  3  0 3 | 0 1 0 3
. . . . x4x      |  8 |   0  4  4 |  *   *   *  *  * 24 |  0  0  0  0  0  3 1 |  0  0  0  0  3 3 | 0 0 1 3
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x3o3o . . .        4 |   6  0  0 |  4   0   0  0  0  0 | 24  *  *  *  *  * * |  2  2  0  0  0 0 | 1 1 2 0
x3o . . x .        6 |   6  3  0 |  2   3   0  0  0  0 |  * 96  *  *  *  * * |  1  0  1  0  1 0 | 1 0 1 1
x3o . . . x        6 |   6  0  3 |  2   0   3  0  0  0 |  *  * 96  *  *  * * |  0  1  0  1  1 0 | 0 1 1 1
x . . o3x .        6 |   3  6  0 |  0   3   0  2  0  0 |  *  *  * 48  *  * * |  0  0  2  0  0 1 | 1 0 0 2
x . . o . x4/3*d   8 |   4  0  8 |  0   0   4  0  2  0 |  *  *  *  * 36  * * |  0  0  0  2  0 1 | 0 1 0 2
x . . . x4x       16 |   8  8  8 |  0   4   4  0  0  2 |  *  *  *  *  * 36 * |  0  0  0  0  2 1 | 0 0 1 2
. . . o3x4x4/3*d  24 |   0 24 24 |  0   0   0  8  6  6 |  *  *  *  *  *  * 4 |  0  0  0  0  0 3 | 0 0 0 3
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x3o3o . x .        8 |  12  4  0 |  8   6   0  0  0  0 |  2  4  0  0  0  0 0 | 24  *  *  *  * * | 1 0 1 0
x3o3o . . x        8 |  12  0  4 |  8   0   6  0  0  0 |  2  0  4  0  0  0 0 |  * 24  *  *  * * | 0 1 1 0
x3o . o3x .        9 |   9  9  0 |  3   9   0  3  0  0 |  0  3  0  3  0  0 0 |  *  * 32  *  * * | 1 0 0 1
x3o . o . x4/3*d  12 |  12  0 12 |  4   0  12  0  3  0 |  0  0  4  0  3  0 0 |  *  *  * 24  * * | 0 1 0 1
x3o . . x4x       24 |  24 12 12 |  8  12  12  0  0  3 |  0  4  4  0  0  3 0 |  *  *  *  * 24 * | 0 0 1 1
x . . o3x4x4/3*d  48 |  24 48 48 |  0  24  24 16 12 12 |  0  0  0  8  6  6 2 |  *  *  *  *  * 6 | 0 0 0 2
-----------------+----+-----------+---------------------+---------------------+------------------+--------
x3o3o o3x .       12 |  18 12  0 | 12  18   0  4  0  0 |  3 12  0  6  0  0 0 |  3  0  4  0  0 0 | 8 * * *
x3o3o o . x4/3*d  16 |  24  0 16 | 16   0  24  0  4  0 |  4  0 16  0  6  0 0 |  0  4  0  4  0 0 | * 6 * *
x3o3o . x4x       32 |  48 16 16 | 32  24  24  0  0  4 |  8 16 16  0  0  6 0 |  4  4  0  0  4 0 | * * 6 *
x3o . o3x4x4/3*d  72 |  72 72 72 | 24  72  72 24 18 18 |  0 24 24 24 18 18 3 |  0  0  8  6  6 3 | * * * 4

© 2004-2025
top of page