Acronym | tetsocco |
Name | (tet,socco)-duoprism |
Circumradius | sqrt[(13+4 sqrt(2))/8] = 1.527124 |
Face vector | 96, 336, 464, 340, 134, 24 |
Confer |
|
As abstract polytope tetsocco is isomorphic to tetgocco, thereby replacing octagons by octagrams, resp. op by stop and socco by gocco, resp. todip by tistodip and soccope by goccope, resp. otet by stotet and trasocco by tragocco.
Incidence matrix according to Dynkin symbol
x3o3o o3x4x4/3*d . . . . . . | 96 | 3 2 2 | 3 6 6 1 1 2 | 1 6 6 3 3 6 1 | 2 2 3 3 6 3 | 1 1 2 3 -----------------+----+-----------+---------------------+---------------------+------------------+-------- x . . . . . | 2 | 144 * * | 2 2 2 0 0 0 | 1 4 4 1 1 2 0 | 2 2 2 2 4 1 | 1 1 2 2 . . . . x . | 2 | * 96 * | 0 3 0 1 0 1 | 0 3 0 3 0 3 1 | 1 0 3 0 3 3 | 1 0 1 3 . . . . . x | 2 | * * 96 | 0 0 3 0 1 1 | 0 0 3 0 3 3 1 | 0 1 0 3 3 3 | 0 1 1 3 -----------------+----+-----------+---------------------+---------------------+------------------+-------- x3o . . . . | 3 | 3 0 0 | 96 * * * * * | 1 2 2 0 0 0 0 | 2 2 1 1 2 0 | 1 1 2 1 x . . . x . | 4 | 2 2 0 | * 144 * * * * | 0 2 0 1 0 1 0 | 1 0 2 0 2 1 | 1 0 1 2 x . . . . x | 4 | 2 0 2 | * * 144 * * * | 0 0 2 0 1 1 0 | 0 1 0 2 2 1 | 0 1 1 2 . . . o3x . | 3 | 0 3 0 | * * * 32 * * | 0 0 0 3 0 0 1 | 0 0 3 0 0 3 | 1 0 0 3 . . . o . x4/3*d | 4 | 0 0 4 | * * * * 24 * | 0 0 0 0 3 0 1 | 0 0 0 3 0 3 | 0 1 0 3 . . . . x4x | 8 | 0 4 4 | * * * * * 24 | 0 0 0 0 0 3 1 | 0 0 0 0 3 3 | 0 0 1 3 -----------------+----+-----------+---------------------+---------------------+------------------+-------- x3o3o . . . ♦ 4 | 6 0 0 | 4 0 0 0 0 0 | 24 * * * * * * | 2 2 0 0 0 0 | 1 1 2 0 x3o . . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | * 96 * * * * * | 1 0 1 0 1 0 | 1 0 1 1 x3o . . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * * 96 * * * * | 0 1 0 1 1 0 | 0 1 1 1 x . . o3x . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * * 48 * * * | 0 0 2 0 0 1 | 1 0 0 2 x . . o . x4/3*d ♦ 8 | 4 0 8 | 0 0 4 0 2 0 | * * * * 36 * * | 0 0 0 2 0 1 | 0 1 0 2 x . . . x4x ♦ 16 | 8 8 8 | 0 4 4 0 0 2 | * * * * * 36 * | 0 0 0 0 2 1 | 0 0 1 2 . . . o3x4x4/3*d ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * * 4 | 0 0 0 0 0 3 | 0 0 0 3 -----------------+----+-----------+---------------------+---------------------+------------------+-------- x3o3o . x . ♦ 8 | 12 4 0 | 8 6 0 0 0 0 | 2 4 0 0 0 0 0 | 24 * * * * * | 1 0 1 0 x3o3o . . x ♦ 8 | 12 0 4 | 8 0 6 0 0 0 | 2 0 4 0 0 0 0 | * 24 * * * * | 0 1 1 0 x3o . o3x . ♦ 9 | 9 9 0 | 3 9 0 3 0 0 | 0 3 0 3 0 0 0 | * * 32 * * * | 1 0 0 1 x3o . o . x4/3*d ♦ 12 | 12 0 12 | 4 0 12 0 3 0 | 0 0 4 0 3 0 0 | * * * 24 * * | 0 1 0 1 x3o . . x4x ♦ 24 | 24 12 12 | 8 12 12 0 0 3 | 0 4 4 0 0 3 0 | * * * * 24 * | 0 0 1 1 x . . o3x4x4/3*d ♦ 48 | 24 48 48 | 0 24 24 16 12 12 | 0 0 0 8 6 6 2 | * * * * * 6 | 0 0 0 2 -----------------+----+-----------+---------------------+---------------------+------------------+-------- x3o3o o3x . ♦ 12 | 18 12 0 | 12 18 0 4 0 0 | 3 12 0 6 0 0 0 | 3 0 4 0 0 0 | 8 * * * x3o3o o . x4/3*d ♦ 16 | 24 0 16 | 16 0 24 0 4 0 | 4 0 16 0 6 0 0 | 0 4 0 4 0 0 | * 6 * * x3o3o . x4x ♦ 32 | 48 16 16 | 32 24 24 0 0 4 | 8 16 16 0 0 6 0 | 4 4 0 0 4 0 | * * 6 * x3o . o3x4x4/3*d ♦ 72 | 72 72 72 | 24 72 72 24 18 18 | 0 24 24 24 18 18 3 | 0 0 8 6 6 3 | * * * 4
© 2004-2024 | top of page |