Acronym | goccope | ||||||||||||||||||||||||||||
Name | great-cubicuboctahedron prism | ||||||||||||||||||||||||||||
Cross sections |
© | ||||||||||||||||||||||||||||
Circumradius | sqrt[(3-sqrt(2))/2] = 0.890446 | ||||||||||||||||||||||||||||
Coordinates | ((sqrt(2)-1)/2, 1/2, 1/2, 1/2) & all permutations in all but last coord., all changes of sign | ||||||||||||||||||||||||||||
General of army | ticcup | ||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| ||||||||||||||||||||||||||||
Dihedral angles | |||||||||||||||||||||||||||||
Face vector | 48, 120, 88, 22 | ||||||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||||||
External links |
As abstract polytope goccope is isomorphic to soccope, thereby replacing octagrams by octagons, respectively gocco by socco and stop by op.
The blend of 4 goccopes results in gittifcoth.
Incidence matrix according to Dynkin symbol
x x3o4x4/3*b . . . . | 48 | 1 2 2 | 2 2 1 2 1 | 1 2 1 1 -------------+----+----------+----------------+-------- x . . . | 2 | 24 * * | 2 2 0 0 0 | 1 2 1 0 . x . . | 2 | * 48 * | 1 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 48 | 0 1 0 1 1 | 0 1 1 1 -------------+----+----------+----------------+-------- x x . . | 4 | 2 2 0 | 24 * * * * | 1 1 0 0 x . . x | 4 | 2 0 2 | * 24 * * * | 0 1 1 0 . x3o . | 3 | 0 3 0 | * * 16 * * | 1 0 0 1 . x . x4/3*b | 8 | 0 4 4 | * * * 12 * | 0 1 0 1 . . o4x | 4 | 0 0 4 | * * * * 12 | 0 0 1 1 -------------+----+----------+----------------+-------- x x3o . ♦ 6 | 3 6 0 | 3 0 2 0 0 | 8 * * * x x . x4/3*b ♦ 16 | 8 8 8 | 4 4 0 2 0 | * 6 * * x . o4x ♦ 8 | 4 0 8 | 0 4 0 0 2 | * * 6 * . x3o4x4/3*b ♦ 24 | 0 24 24 | 0 0 8 6 6 | * * * 2
x x3/2o4/3x4/3*b . . . . | 48 | 1 2 2 | 2 2 1 2 1 | 1 2 1 1 -----------------+----+----------+----------------+-------- x . . . | 2 | 24 * * | 2 2 0 0 0 | 1 2 1 0 . x . . | 2 | * 48 * | 1 0 1 1 0 | 1 1 0 1 . . . x | 2 | * * 48 | 0 1 0 1 1 | 0 1 1 1 -----------------+----+----------+----------------+-------- x x . . | 4 | 2 2 0 | 24 * * * * | 1 1 0 0 x . . x | 4 | 2 0 2 | * 24 * * * | 0 1 1 0 . x3/2o . | 3 | 0 3 0 | * * 16 * * | 1 0 0 1 . x . x4/3*b | 8 | 0 4 4 | * * * 12 * | 0 1 0 1 . . o4/3x | 4 | 0 0 4 | * * * * 12 | 0 0 1 1 -----------------+----+----------+----------------+-------- x x3/2o . ♦ 6 | 3 6 0 | 3 0 2 0 0 | 8 * * * x x . x4/3*b ♦ 16 | 8 8 8 | 4 4 0 2 0 | * 6 * * x . o4/3x ♦ 8 | 4 0 8 | 0 4 0 0 2 | * * 6 * . x3/2o4/3x4/3*b ♦ 24 | 0 24 24 | 0 0 8 6 6 | * * * 2
© 2004-2025 | top of page |