Acronym goccope
Name great-cubicuboctahedron prism
Cross sections
 ©
Circumradius sqrt[(3-sqrt(2))/2] = 0.890446
Coordinates ((sqrt(2)-1)/2, 1/2, 1/2, 1/2)   & all permutations in all but last coord., all changes of sign
General of army ticcup
Colonel of regiment (is itself locally convex – uniform polyteral members:
by cells: cube gocco groh querco stop trip
quercope 1800208
grohp 1202060
goccope 620068
)
Dihedral angles
  • at {4} between stop and trip:   arccos(-1/sqrt(3)) = 125.264390°
  • at {4} between cube and stop:   90°
  • at {4} between cube and gocco:   90°
  • at {8/3} between stop and gocco:   90°
  • at {3} between gocco and trip:   90°
Confer
blends:
gittifcoth  
External
links
hedrondude  

As abstract polytope goccope is isomorphic to soccope, thereby replacing octagrams by octagons, respectively gocco by socco and stop by op.

The blend of 4 goccopes results in gittifcoth.


Incidence matrix according to Dynkin symbol

x x3o4x4/3*b

. . . .      | 48 |  1  2  2 |  2  2  1  2  1 | 1 2 1 1
-------------+----+----------+----------------+--------
x . . .      |  2 | 24  *  * |  2  2  0  0  0 | 1 2 1 0
. x . .      |  2 |  * 48  * |  1  0  1  1  0 | 1 1 0 1
. . . x      |  2 |  *  * 48 |  0  1  0  1  1 | 0 1 1 1
-------------+----+----------+----------------+--------
x x . .      |  4 |  2  2  0 | 24  *  *  *  * | 1 1 0 0
x . . x      |  4 |  2  0  2 |  * 24  *  *  * | 0 1 1 0
. x3o .      |  3 |  0  3  0 |  *  * 16  *  * | 1 0 0 1
. x . x4/3*b |  8 |  0  4  4 |  *  *  * 12  * | 0 1 0 1
. . o4x      |  4 |  0  0  4 |  *  *  *  * 12 | 0 0 1 1
-------------+----+----------+----------------+--------
x x3o .        6 |  3  6  0 |  3  0  2  0  0 | 8 * * *
x x . x4/3*b  16 |  8  8  8 |  4  4  0  2  0 | * 6 * *
x . o4x        8 |  4  0  8 |  0  4  0  0  2 | * * 6 *
. x3o4x4/3*b  24 |  0 24 24 |  0  0  8  6  6 | * * * 2

x x3/2o4/3x4/3*b

. .   .   .      | 48 |  1  2  2 |  2  2  1  2  1 | 1 2 1 1
-----------------+----+----------+----------------+--------
x .   .   .      |  2 | 24  *  * |  2  2  0  0  0 | 1 2 1 0
. x   .   .      |  2 |  * 48  * |  1  0  1  1  0 | 1 1 0 1
. .   .   x      |  2 |  *  * 48 |  0  1  0  1  1 | 0 1 1 1
-----------------+----+----------+----------------+--------
x x   .   .      |  4 |  2  2  0 | 24  *  *  *  * | 1 1 0 0
x .   .   x      |  4 |  2  0  2 |  * 24  *  *  * | 0 1 1 0
. x3/2o   .      |  3 |  0  3  0 |  *  * 16  *  * | 1 0 0 1
. x   .   x4/3*b |  8 |  0  4  4 |  *  *  * 12  * | 0 1 0 1
. .   o4/3x      |  4 |  0  0  4 |  *  *  *  * 12 | 0 0 1 1
-----------------+----+----------+----------------+--------
x x3/2o   .        6 |  3  6  0 |  3  0  2  0  0 | 8 * * *
x x   .   x4/3*b  16 |  8  8  8 |  4  4  0  2  0 | * 6 * *
x .   o4/3x        8 |  4  0  8 |  0  4  0  0  2 | * * 6 *
. x3/2o4/3x4/3*b  24 |  0 24 24 |  0  0  8  6  6 | * * * 2

© 2004-2019
top of page