Acronym | tragittith |
Name | (triangle,gittith)-duoprism |
Circumradius | sqrt[(11-3 sqrt(2))/6] = 1.061238 |
Face vector | 192, 768, 1048, 696, 235, 35 |
Confer |
|
As abstract polytope tragittith is isomorphic to trasteth, thereby replacing octagrams by octagons, resp. stop by op and gocco by socco, resp. tistodip by todip, goccope by soccope and gittith by steth, resp. tragocco by trasocco and gittithip by stethip.
Incidence matrix according to Dynkin symbol
x3o o3o3x4/3x4*d . . . . . . | 192 | 2 3 3 | 1 6 6 3 3 3 | 3 3 6 6 6 1 1 3 | 3 3 3 2 2 6 1 | 1 1 3 2 -----------------+-----+-------------+-----------------------+---------------------------+---------------------+--------- x . . . . . | 2 | 192 * * | 1 3 3 0 0 0 | 3 3 3 3 3 0 0 0 | 3 3 3 1 1 3 0 | 1 1 3 1 . . . . x . | 2 | * 288 * | 0 2 0 2 0 1 | 1 0 4 0 2 1 0 2 | 2 0 1 2 0 4 1 | 1 0 2 2 . . . . . x | 2 | * * 288 | 0 0 2 0 2 1 | 0 1 0 4 2 0 1 2 | 0 2 1 0 2 4 1 | 0 1 2 2 -----------------+-----+-------------+-----------------------+---------------------------+---------------------+--------- x3o . . . . | 3 | 3 0 0 | 64 * * * * * | 3 3 0 0 0 0 0 0 | 3 3 3 0 0 0 0 | 1 1 3 0 x . . . x . | 4 | 2 2 0 | * 288 * * * * | 1 0 2 0 1 0 0 0 | 2 0 1 1 0 2 0 | 1 0 2 1 x . . . . x | 4 | 2 0 2 | * * 288 * * * | 0 1 0 2 1 0 0 0 | 0 2 1 0 1 2 0 | 0 1 2 1 . . . o3x . | 3 | 0 3 0 | * * * 192 * * | 0 0 2 0 0 1 0 1 | 1 0 0 2 0 2 1 | 1 0 1 2 . . . o . x4*d | 4 | 0 0 4 | * * * * 144 * | 0 0 0 2 0 0 1 1 | 0 1 0 0 2 2 1 | 0 1 1 2 . . . . x4/3x | 8 | 0 4 4 | * * * * * 72 | 0 0 0 0 2 0 0 2 | 0 0 1 0 0 4 1 | 0 0 2 2 -----------------+-----+-------------+-----------------------+---------------------------+---------------------+--------- x3o . . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | 96 * * * * * * * | 2 0 1 0 0 0 0 | 1 0 2 0 x3o . . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * 96 * * * * * * | 0 2 1 0 0 0 0 | 0 1 2 0 x . . o3x . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * 192 * * * * * | 1 0 0 1 0 1 0 | 1 0 1 1 x . . o . x4*d ♦ 8 | 4 0 8 | 0 0 4 0 2 0 | * * * 144 * * * * | 0 1 0 0 1 1 0 | 0 1 1 1 x . . . x4/3x ♦ 16 | 8 8 8 | 0 4 4 0 0 2 | * * * * 72 * * * | 0 0 1 0 0 2 0 | 0 0 2 1 . . o3o3x . ♦ 4 | 0 6 0 | 0 0 0 4 0 0 | * * * * * 48 * * | 0 0 0 2 0 0 1 | 1 0 0 2 . . o3o . x4*d ♦ 8 | 0 0 12 | 0 0 0 0 6 0 | * * * * * * 24 * | 0 0 0 0 2 0 1 | 0 1 0 2 . . . o3x4/3x4*d ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * * * 24 | 0 0 0 0 0 2 1 | 0 0 1 2 -----------------+-----+-------------+-----------------------+---------------------------+---------------------+--------- x3o . o3x . ♦ 9 | 9 9 0 | 3 9 0 3 0 0 | 3 0 3 0 0 0 0 0 | 64 * * * * * * | 1 0 1 0 x3o . o . x4*d ♦ 12 | 12 0 12 | 4 0 12 0 3 0 | 0 4 0 3 0 0 0 0 | * 48 * * * * * | 0 1 1 0 x3o . . x4/3x ♦ 24 | 24 12 12 | 8 12 12 0 0 3 | 4 4 0 0 3 0 0 0 | * * 24 * * * * | 0 0 2 0 x . o3o3x . ♦ 8 | 4 12 0 | 0 6 0 8 0 0 | 0 0 4 0 0 2 0 0 | * * * 48 * * * | 1 0 0 1 x . o3o . x4*d ♦ 16 | 8 0 24 | 0 0 12 0 12 0 | 0 0 0 6 0 0 2 0 | * * * * 24 * * | 0 1 0 1 x . . o3x4/3x4*d ♦ 48 | 24 48 48 | 0 24 24 16 12 12 | 0 0 8 6 6 0 0 2 | * * * * * 24 * | 0 0 1 1 . . o3o3x4/3x4*d ♦ 64 | 0 96 96 | 0 0 0 64 48 24 | 0 0 0 0 0 16 8 8 | * * * * * * 3 | 0 0 0 2 -----------------+-----+-------------+-----------------------+---------------------------+---------------------+--------- x3o o3o3x . ♦ 12 | 12 18 0 | 4 18 0 12 0 0 | 6 0 12 0 0 3 0 0 | 4 0 0 3 0 0 0 | 16 * * * x3o o3o . x4*d ♦ 24 | 24 0 36 | 8 0 36 0 18 0 | 0 12 0 18 0 0 3 0 | 0 6 0 0 3 0 0 | * 8 * * x3o . o3x4/3x4*d ♦ 72 | 72 72 72 | 24 72 72 24 18 18 | 24 24 24 18 18 0 0 3 | 8 6 6 0 0 3 0 | * * 8 * x . o3o3x4/3x4*d ♦ 128 | 64 192 192 | 0 96 96 128 96 48 | 0 0 64 48 24 32 16 16 | 0 0 0 16 8 8 2 | * * * 3
© 2004-2024 | top of page |