Acronym | steth |
Name | small tesseractitesseractihexadecachoron |
Cross sections |
© |
Circumradius | sqrt[(3+sqrt(2))/2] = 1.485633 |
Inradius wrt. tet | [1+2 sqrt(2)]/sqrt(8) = 1.353553 |
Inradius wrt. cube | (1+sqrt(2))/2 = 1.207107 |
Inradius wrt. socco | 1/2 = 0.5 |
Coordinates | ((1+sqrt(2))/2, 1/2, 1/2, 1/2) & all permutations, all changes of sign |
Volume | [19+24 sqrt(2)]/6 = 8.823521 |
Surface | [72+68 sqrt(2)]/3 = 56.055507 |
General of army | sidpith |
Colonel of regiment | sidpith |
Dihedral angles
(at margins) | |
Face vector | 64, 192, 136, 32 |
Confer |
|
External links |
As abstract polytope steth is isomorphic to gittith, thereby replacing octagons by octagrams, resp. socco by gocco. – As such steth is a lieutenant.
Incidence matrix according to Dynkin symbol
o3o3x4x4/3*b . . . . | 64 | 3 3 | 3 3 3 | 1 1 3 -------------+----+-------+----------+------- . . x . | 2 | 96 * | 2 0 1 | 1 0 2 . . . x | 2 | * 96 | 0 2 1 | 0 1 2 -------------+----+-------+----------+------- . o3x . | 3 | 3 0 | 64 * * | 1 0 1 . o . x4/3*b | 4 | 0 4 | * 48 * | 0 1 1 . . x4x | 8 | 4 4 | * * 24 | 0 0 2 -------------+----+-------+----------+------- o3o3x . ♦ 4 | 6 0 | 4 0 0 | 16 * * o3o . x4/3*b ♦ 8 | 0 12 | 0 6 0 | * 8 * . o3x4x4/3*b ♦ 24 | 24 24 | 8 6 6 | * * 8
o3o3/2x4x4*b . . . . | 64 | 3 3 | 3 3 3 | 1 1 3 -------------+----+-------+----------+------- . . x . | 2 | 96 * | 2 0 1 | 1 0 2 . . . x | 2 | * 96 | 0 2 1 | 0 1 2 -------------+----+-------+----------+------- . o3/2x . | 3 | 3 0 | 64 * * | 1 0 1 . o . x4*b | 4 | 0 4 | * 48 * | 0 1 1 . . x4x | 8 | 4 4 | * * 24 | 0 0 2 -------------+----+-------+----------+------- o3o3/2x . ♦ 4 | 6 0 | 4 0 0 | 16 * * o3o . x4*b ♦ 8 | 0 12 | 0 6 0 | * 8 * . o3/2x4x4*b ♦ 24 | 24 24 | 8 6 6 | * * 8
o3/2o3x4x4/3*b . . . . | 64 | 3 3 | 3 3 3 | 1 1 3 ---------------+----+-------+----------+------- . . x . | 2 | 96 * | 2 0 1 | 1 0 2 . . . x | 2 | * 96 | 0 2 1 | 0 1 2 ---------------+----+-------+----------+------- . o3x . | 3 | 3 0 | 64 * * | 1 0 1 . o . x4/3*b | 4 | 0 4 | * 48 * | 0 1 1 . . x4x | 8 | 4 4 | * * 24 | 0 0 2 ---------------+----+-------+----------+------- o3/2o3x . ♦ 4 | 6 0 | 4 0 0 | 16 * * o3/2o . x4/3*b ♦ 8 | 0 12 | 0 6 0 | * 8 * . o3x4x4/3*b ♦ 24 | 24 24 | 8 6 6 | * * 8
o3/2o3/2x4x4*b . . . . | 64 | 3 3 | 3 3 3 | 1 1 3 ---------------+----+-------+----------+------- . . x . | 2 | 96 * | 2 0 1 | 1 0 2 . . . x | 2 | * 96 | 0 2 1 | 0 1 2 ---------------+----+-------+----------+------- . o3/2x . | 3 | 3 0 | 64 * * | 1 0 1 . o . x4*b | 4 | 0 4 | * 48 * | 0 1 1 . . x4x | 8 | 4 4 | * * 24 | 0 0 2 ---------------+----+-------+----------+------- o3/2o3/2x . ♦ 4 | 6 0 | 4 0 0 | 16 * * o3/2o . x4*b ♦ 8 | 0 12 | 0 6 0 | * 8 * . o3/2x4x4*b ♦ 24 | 24 24 | 8 6 6 | * * 8
© 2004-2025 | top of page |