Acronym soccope
Name small-cubicuboctahedron prism
Cross sections
 ©
Circumradius sqrt[(3+sqrt(2))/2] = 1.485633
Coordinates ((1+sqrt(2))/2, 1/2, 1/2, 1/2)   & all permutations in all but last coord., all changes of sign
General of army sircope
Colonel of regiment sircope
Dihedral angles
  • at {4} between cube and op:   90°
  • at {4} between cube and socco:   90°
  • at {8} between op and socco:   90°
  • at {3} between socco and trip:   90°
  • at {4} between op and trip:   arccos[1/sqrt(3)] = 54.735610°
Face vector 48, 120, 88, 22
Confer
blends:
stefacoth  
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki

As abstract polytope soccope is isomorphic to goccope, thereby replacing octagons by octagrams, respectively socco by gocco and op by stop.

The blend of 4 soccopes results in stefacoth.


Incidence matrix according to Dynkin symbol

x o3x4x4/3*b

. . . .      | 48 |  1  2  2 |  2  2  1  1  2 | 1 1 2 1
-------------+----+----------+----------------+--------
x . . .      |  2 | 24  *  * |  2  2  0  0  0 | 1 1 2 0
. . x .      |  2 |  * 48  * |  1  0  1  0  1 | 1 0 1 1
. . . x      |  2 |  *  * 48 |  0  1  0  1  1 | 0 1 1 1
-------------+----+----------+----------------+--------
x . x .      |  4 |  2  2  0 | 24  *  *  *  * | 1 0 1 0
x . . x      |  4 |  2  0  2 |  * 24  *  *  * | 0 1 1 0
. o3x .      |  3 |  0  3  0 |  *  * 16  *  * | 1 0 0 1
. o . x4/3*b |  4 |  0  0  4 |  *  *  * 12  * | 0 1 0 1
. . x4x      |  8 |  0  4  4 |  *  *  *  * 12 | 0 0 1 1
-------------+----+----------+----------------+--------
x o3x .        6 |  3  6  0 |  3  0  2  0  0 | 8 * * *
x o . x4/3*b   8 |  4  0  8 |  0  4  0  2  0 | * 6 * *
x . x4x       16 |  8  8  8 |  4  4  0  0  2 | * * 6 *
. o3x4x4/3*b  24 |  0 24 24 |  0  0  8  6  6 | * * * 2

x o3/2x4x4*b

. .   . .    | 48 |  1  2  2 |  2  2  1  1  2 | 1 1 2 1
-------------+----+----------+----------------+--------
x .   . .    |  2 | 24  *  * |  2  2  0  0  0 | 1 1 2 0
. .   x .    |  2 |  * 48  * |  1  0  1  0  1 | 1 0 1 1
. .   . x    |  2 |  *  * 48 |  0  1  0  1  1 | 0 1 1 1
-------------+----+----------+----------------+--------
x .   x .    |  4 |  2  2  0 | 24  *  *  *  * | 1 0 1 0
x .   . x    |  4 |  2  0  2 |  * 24  *  *  * | 0 1 1 0
. o3/2x .    |  3 |  0  3  0 |  *  * 16  *  * | 1 0 0 1
. o   . x4*b |  4 |  0  0  4 |  *  *  * 12  * | 0 1 0 1
. .   x4x    |  8 |  0  4  4 |  *  *  *  * 12 | 0 0 1 1
-------------+----+----------+----------------+--------
x o3/2x .      6 |  3  6  0 |  3  0  2  0  0 | 8 * * *
x o   . x4*b   8 |  4  0  8 |  0  4  0  2  0 | * 6 * *
x .   x4x     16 |  8  8  8 |  4  4  0  0  2 | * * 6 *
. o3/2x4x4*b  24 |  0 24 24 |  0  0  8  6  6 | * * * 2

© 2004-2024
top of page