Acronym todip, K-4.59
Name triangle - octagon duoprism,
octagon - op wedge
 
Circumradius sqrt[(8+3 sqrt(2))/6] = 1.428440
Volume [1+sqrt(2)] sqrt(3)/2 = 2.090770
General of army (is itself convex)
Colonel of regiment (is itself locally convex)
Dihedral angles
  • at {3} between trip and trip:   135°
  • at {4} between op and trip:   90°
  • at {8} between op and op:   60°
Confer
general duoprisms:
n,m-dip   2n,m-dip   3,n-dip   8,n-dip  
general polytopal classes:
segmentochora  
External
links
hedrondude   wikipedia   polytopewiki

As abstract polychoron todip is isomorph to tistodip, thereby replacing octagons by octagrams, resp. op by stop.


Incidence matrix according to Dynkin symbol

x3o x8o

. . . . | 24 |  2  2 | 1  4 1 | 2 2
--------+----+-------+--------+----
x . . . |  2 | 24  * | 1  2 0 | 2 1
. . x . |  2 |  * 24 | 0  2 1 | 1 2
--------+----+-------+--------+----
x3o . . |  3 |  3  0 | 8  * * | 2 0
x . x . |  4 |  2  2 | * 24 * | 1 1
. . x8o |  8 |  0  8 | *  * 3 | 0 2
--------+----+-------+--------+----
x3o x .   6 |  6  3 | 2  3 0 | 8 *
x . x8o  16 |  8 16 | 0  8 2 | * 3

x3o x8/7o

. . .   . | 24 |  2  2 | 1  4 1 | 2 2
----------+----+-------+--------+----
x . .   . |  2 | 24  * | 1  2 0 | 2 1
. . x   . |  2 |  * 24 | 0  2 1 | 1 2
----------+----+-------+--------+----
x3o .   . |  3 |  3  0 | 8  * * | 2 0
x . x   . |  4 |  2  2 | * 24 * | 1 1
. . x8/7o |  8 |  0  8 | *  * 3 | 0 2
----------+----+-------+--------+----
x3o x   .   6 |  6  3 | 2  3 0 | 8 *
x . x8/7o  16 |  8 16 | 0  8 2 | * 3

x3/2o x8o

.   . . . | 24 |  2  2 | 1  4 1 | 2 2
----------+----+-------+--------+----
x   . . . |  2 | 24  * | 1  2 0 | 2 1
.   . x . |  2 |  * 24 | 0  2 1 | 1 2
----------+----+-------+--------+----
x3/2o . . |  3 |  3  0 | 8  * * | 2 0
x   . x . |  4 |  2  2 | * 24 * | 1 1
.   . x8o |  8 |  0  8 | *  * 3 | 0 2
----------+----+-------+--------+----
x3/2o x .   6 |  6  3 | 2  3 0 | 8 *
x   . x8o  16 |  8 16 | 0  8 2 | * 3

x3/2o x8/7o

.   . .   . | 24 |  2  2 | 1  4 1 | 2 2
------------+----+-------+--------+----
x   . .   . |  2 | 24  * | 1  2 0 | 2 1
.   . x   . |  2 |  * 24 | 0  2 1 | 1 2
------------+----+-------+--------+----
x3/2o .   . |  3 |  3  0 | 8  * * | 2 0
x   . x   . |  4 |  2  2 | * 24 * | 1 1
.   . x8/7o |  8 |  0  8 | *  * 3 | 0 2
------------+----+-------+--------+----
x3/2o x   .   6 |  6  3 | 2  3 0 | 8 *
x   . x8/7o  16 |  8 16 | 0  8 2 | * 3

x3o x4x

. . . . | 24 |  2  1  1 | 1  2  2 1 | 1 1 2
--------+----+----------+-----------+------
x . . . |  2 | 24  *  * | 1  1  1 0 | 1 1 1
. . x . |  2 |  * 12  * | 0  2  0 1 | 1 0 2
. . . x |  2 |  *  * 12 | 0  0  2 1 | 0 1 2
--------+----+----------+-----------+------
x3o . . |  3 |  3  0  0 | 8  *  * * | 1 1 0
x . x . |  4 |  2  2  0 | * 12  * * | 1 0 1
x . . x |  4 |  2  0  2 | *  * 12 * | 0 1 1
. . x4x |  8 |  0  4  4 | *  *  * 3 | 0 0 2
--------+----+----------+-----------+------
x3o x .   6 |  6  3  0 | 2  3  0 0 | 4 * *
x3o . x   6 |  6  0  3 | 2  0  3 0 | * 4 *
x . x4x  16 |  8  8  8 | 0  4  4 2 | * * 3

x3/2o x4x

.   . . . | 24 |  2  1  1 | 1  2  2 1 | 1 1 2
----------+----+----------+-----------+------
x   . . . |  2 | 24  *  * | 1  1  1 0 | 1 1 1
.   . x . |  2 |  * 12  * | 0  2  0 1 | 1 0 2
.   . . x |  2 |  *  * 12 | 0  0  2 1 | 0 1 2
----------+----+----------+-----------+------
x3/2o . . |  3 |  3  0  0 | 8  *  * * | 1 1 0
x   . x . |  4 |  2  2  0 | * 12  * * | 1 0 1
x   . . x |  4 |  2  0  2 | *  * 12 * | 0 1 1
.   . x4x |  8 |  0  4  4 | *  *  * 3 | 0 0 2
----------+----+----------+-----------+------
x3/2o x .   6 |  6  3  0 | 2  3  0 0 | 4 * *
x3/2o . x   6 |  6  0  3 | 2  0  3 0 | * 4 *
x   . x4x  16 |  8  8  8 | 0  4  4 2 | * * 3

ox xx4xx&#x   → height = sqrt(3)/2 = 0.866025

o. o.4o.    | 8  * | 1 1  2 0 0 0 | 1 1 2 2 0 0 0 | 1 1 2 0
.o .o4.o    | * 16 | 0 0  1 1 1 1 | 0 1 1 1 1 1 1 | 1 1 1 1
------------+------+--------------+---------------+--------
.. x. ..    | 2  0 | 4 *  * * * * | 1 0 2 0 0 0 0 | 1 0 2 0
.. .. x.    | 2  0 | * 4  * * * * | 1 0 0 2 0 0 0 | 0 1 2 0
oo oo4oo&#x | 1  1 | * * 16 * * * | 0 1 1 1 0 0 0 | 1 1 1 0
.x .. ..    | 0  2 | * *  * 8 * * | 0 1 0 0 1 1 0 | 1 1 0 1
.. .x ..    | 0  2 | * *  * * 8 * | 0 0 1 0 1 0 1 | 1 0 1 1
.. .. .x    | 0  2 | * *  * * * 8 | 0 0 0 1 0 1 1 | 0 1 1 1
------------+------+--------------+---------------+--------
.. x.4x.    | 8  0 | 4 4  0 0 0 0 | 1 * * * * * * | 0 0 2 0
ox .. ..&#x | 1  2 | 0 0  2 1 0 0 | * 8 * * * * * | 1 1 0 0
.. xx ..&#x | 2  2 | 1 0  2 0 1 0 | * * 8 * * * * | 1 0 1 0
.. .. xx&#x | 2  2 | 0 1  2 0 0 1 | * * * 8 * * * | 0 1 1 0
.x .x ..    | 0  4 | 0 0  0 2 2 0 | * * * * 4 * * | 1 0 0 1
.x .. .x    | 0  4 | 0 0  0 2 0 2 | * * * * * 4 * | 0 1 0 1
.. .x4.x    | 0  8 | 0 0  0 0 4 4 | * * * * * * 2 | 0 0 1 1
------------+------+--------------+---------------+--------
ox xx ..&#x  2  4 | 1 0  4 2 2 0 | 0 2 2 0 1 0 0 | 4 * * *
ox .. xx&#x  2  4 | 0 1  4 2 0 2 | 0 2 0 2 0 1 0 | * 4 * *
.. xx4xx&#x  8  8 | 4 4  8 0 4 4 | 1 0 4 4 0 0 1 | * * 2 *
.x .x4.x     0 16 | 0 0  0 8 8 8 | 0 0 0 0 4 4 2 | * * * 1

© 2004-2021
top of page