Acronym todip, K-4.59
Name triangle - octagon duoprism,
octagon - op wedge
 
Circumradius sqrt[(8+3 sqrt(2))/6] = 1.428440
General of army (is itself convex)
Colonel of regiment (is itself locally convex)
Dihedral angles
  • at {3} between trip and trip:   135°
  • at {4} between op and trip:   90°
  • at {8} between op and op:   60°
Confer
general duoprisms:
n,m-dip   2n,m-dip   3,n-dip   8,n-dip  
general polytopal classes:
segmentochora  
External
links
hedrondude   wikipedia

As abstract polychoron todip is isomorph to tistodip, thereby replacing octagons by octagrams, resp. op by stop.


Incidence matrix according to Dynkin symbol

x3o x8o

. . . . | 24 |  2  2 | 1  4 1 | 2 2
--------+----+-------+--------+----
x . . . |  2 | 24  * | 1  2 0 | 2 1
. . x . |  2 |  * 24 | 0  2 1 | 1 2
--------+----+-------+--------+----
x3o . . |  3 |  3  0 | 8  * * | 2 0
x . x . |  4 |  2  2 | * 24 * | 1 1
. . x8o |  8 |  0  8 | *  * 3 | 0 2
--------+----+-------+--------+----
x3o x .   6 |  6  3 | 2  3 0 | 8 *
x . x8o  16 |  8 16 | 0  8 2 | * 3

x3o x8/7o

. . .   . | 24 |  2  2 | 1  4 1 | 2 2
----------+----+-------+--------+----
x . .   . |  2 | 24  * | 1  2 0 | 2 1
. . x   . |  2 |  * 24 | 0  2 1 | 1 2
----------+----+-------+--------+----
x3o .   . |  3 |  3  0 | 8  * * | 2 0
x . x   . |  4 |  2  2 | * 24 * | 1 1
. . x8/7o |  8 |  0  8 | *  * 3 | 0 2
----------+----+-------+--------+----
x3o x   .   6 |  6  3 | 2  3 0 | 8 *
x . x8/7o  16 |  8 16 | 0  8 2 | * 3

x3/2o x8o

.   . . . | 24 |  2  2 | 1  4 1 | 2 2
----------+----+-------+--------+----
x   . . . |  2 | 24  * | 1  2 0 | 2 1
.   . x . |  2 |  * 24 | 0  2 1 | 1 2
----------+----+-------+--------+----
x3/2o . . |  3 |  3  0 | 8  * * | 2 0
x   . x . |  4 |  2  2 | * 24 * | 1 1
.   . x8o |  8 |  0  8 | *  * 3 | 0 2
----------+----+-------+--------+----
x3/2o x .   6 |  6  3 | 2  3 0 | 8 *
x   . x8o  16 |  8 16 | 0  8 2 | * 3

x3/2o x8/7o

.   . .   . | 24 |  2  2 | 1  4 1 | 2 2
------------+----+-------+--------+----
x   . .   . |  2 | 24  * | 1  2 0 | 2 1
.   . x   . |  2 |  * 24 | 0  2 1 | 1 2
------------+----+-------+--------+----
x3/2o .   . |  3 |  3  0 | 8  * * | 2 0
x   . x   . |  4 |  2  2 | * 24 * | 1 1
.   . x8/7o |  8 |  0  8 | *  * 3 | 0 2
------------+----+-------+--------+----
x3/2o x   .   6 |  6  3 | 2  3 0 | 8 *
x   . x8/7o  16 |  8 16 | 0  8 2 | * 3

x3o x4x

. . . . | 24 |  2  1  1 | 1  2  2 1 | 1 1 2
--------+----+----------+-----------+------
x . . . |  2 | 24  *  * | 1  1  1 0 | 1 1 1
. . x . |  2 |  * 12  * | 0  2  0 1 | 1 0 2
. . . x |  2 |  *  * 12 | 0  0  2 1 | 0 1 2
--------+----+----------+-----------+------
x3o . . |  3 |  3  0  0 | 8  *  * * | 1 1 0
x . x . |  4 |  2  2  0 | * 12  * * | 1 0 1
x . . x |  4 |  2  0  2 | *  * 12 * | 0 1 1
. . x4x |  8 |  0  4  4 | *  *  * 3 | 0 0 2
--------+----+----------+-----------+------
x3o x .   6 |  6  3  0 | 2  3  0 0 | 4 * *
x3o . x   6 |  6  0  3 | 2  0  3 0 | * 4 *
x . x4x  16 |  8  8  8 | 0  4  4 2 | * * 3

x3/2o x4x

.   . . . | 24 |  2  1  1 | 1  2  2 1 | 1 1 2
----------+----+----------+-----------+------
x   . . . |  2 | 24  *  * | 1  1  1 0 | 1 1 1
.   . x . |  2 |  * 12  * | 0  2  0 1 | 1 0 2
.   . . x |  2 |  *  * 12 | 0  0  2 1 | 0 1 2
----------+----+----------+-----------+------
x3/2o . . |  3 |  3  0  0 | 8  *  * * | 1 1 0
x   . x . |  4 |  2  2  0 | * 12  * * | 1 0 1
x   . . x |  4 |  2  0  2 | *  * 12 * | 0 1 1
.   . x4x |  8 |  0  4  4 | *  *  * 3 | 0 0 2
----------+----+----------+-----------+------
x3/2o x .   6 |  6  3  0 | 2  3  0 0 | 4 * *
x3/2o . x   6 |  6  0  3 | 2  0  3 0 | * 4 *
x   . x4x  16 |  8  8  8 | 0  4  4 2 | * * 3

© 2004-2018
top of page