Acronym trasteth
Name (triangle,steth)-duoprism
Circumradius sqrt[(11+3 sqrt(2))/6] = 1.593876
Face vector 192, 768, 1048, 696, 235, 35
Confer
general polytopal classes:
Wythoffian polypeta  

As abstract polytope trasteth is isomorphic to tragittith, thereby replacing octagons by octagrams, resp. op by stop and socco by gocco, resp. todip by tistodip, soccope by goccope and steth by gittith, resp. trasocco by tragocco and stethip by gittithip.


Incidence matrix according to Dynkin symbol

x3o o3o3x4x4/3*d

. . . . . .      | 192 |   2   3   3 |  1   6   6   3   3  3 |  3  3   6   6  6  1  1  3 |  3  3  3  2  2  6 1 |  1 1 3 2
-----------------+-----+-------------+-----------------------+---------------------------+---------------------+---------
x . . . . .      |   2 | 192   *   * |  1   3   3   0   0  0 |  3  3   3   3  3  0  0  0 |  3  3  3  1  1  3 0 |  1 1 3 1
. . . . x .      |   2 |   * 288   * |  0   2   0   2   0  1 |  1  0   4   0  2  1  0  2 |  2  0  1  2  0  4 1 |  1 0 2 2
. . . . . x      |   2 |   *   * 288 |  0   0   2   0   2  1 |  0  1   0   4  2  0  1  2 |  0  2  1  0  2  4 1 |  0 1 2 2
-----------------+-----+-------------+-----------------------+---------------------------+---------------------+---------
x3o . . . .      |   3 |   3   0   0 | 64   *   *   *   *  * |  3  3   0   0  0  0  0  0 |  3  3  3  0  0  0 0 |  1 1 3 0
x . . . x .      |   4 |   2   2   0 |  * 288   *   *   *  * |  1  0   2   0  1  0  0  0 |  2  0  1  1  0  2 0 |  1 0 2 1
x . . . . x      |   4 |   2   0   2 |  *   * 288   *   *  * |  0  1   0   2  1  0  0  0 |  0  2  1  0  1  2 0 |  0 1 2 1
. . . o3x .      |   3 |   0   3   0 |  *   *   * 192   *  * |  0  0   2   0  0  1  0  1 |  1  0  0  2  0  2 1 |  1 0 1 2
. . . o . x4/3*d |   4 |   0   0   4 |  *   *   *   * 144  * |  0  0   0   2  0  0  1  1 |  0  1  0  0  2  2 1 |  0 1 1 2
. . . . x4x      |   8 |   0   4   4 |  *   *   *   *   * 72 |  0  0   0   0  2  0  0  2 |  0  0  1  0  0  4 1 |  0 0 2 2
-----------------+-----+-------------+-----------------------+---------------------------+---------------------+---------
x3o . . x .         6 |   6   3   0 |  2   3   0   0   0  0 | 96  *   *   *  *  *  *  * |  2  0  1  0  0  0 0 |  1 0 2 0
x3o . . . x         6 |   6   0   3 |  2   0   3   0   0  0 |  * 96   *   *  *  *  *  * |  0  2  1  0  0  0 0 |  0 1 2 0
x . . o3x .         6 |   3   6   0 |  0   3   0   2   0  0 |  *  * 192   *  *  *  *  * |  1  0  0  1  0  1 0 |  1 0 1 1
x . . o . x4/3*d    8 |   4   0   8 |  0   0   4   0   2  0 |  *  *   * 144  *  *  *  * |  0  1  0  0  1  1 0 |  0 1 1 1
x . . . x4x        16 |   8   8   8 |  0   4   4   0   0  2 |  *  *   *   * 72  *  *  * |  0  0  1  0  0  2 0 |  0 0 2 1
. . o3o3x .         4 |   0   6   0 |  0   0   0   4   0  0 |  *  *   *   *  * 48  *  * |  0  0  0  2  0  0 1 |  1 0 0 2
. . o3o . x4/3*d    8 |   0   0  12 |  0   0   0   0   6  0 |  *  *   *   *  *  * 24  * |  0  0  0  0  2  0 1 |  0 1 0 2
. . . o3x4x4/3*d   24 |   0  24  24 |  0   0   0   8   6  6 |  *  *   *   *  *  *  * 24 |  0  0  0  0  0  2 1 |  0 0 1 2
-----------------+-----+-------------+-----------------------+---------------------------+---------------------+---------
x3o . o3x .         9 |   9   9   0 |  3   9   0   3   0  0 |  3  0   3   0  0  0  0  0 | 64  *  *  *  *  * * |  1 0 1 0
x3o . o . x4/3*d   12 |  12   0  12 |  4   0  12   0   3  0 |  0  4   0   3  0  0  0  0 |  * 48  *  *  *  * * |  0 1 1 0
x3o . . x4x        24 |  24  12  12 |  8  12  12   0   0  3 |  4  4   0   0  3  0  0  0 |  *  * 24  *  *  * * |  0 0 2 0
x . o3o3x .         8 |   4  12   0 |  0   6   0   8   0  0 |  0  0   4   0  0  2  0  0 |  *  *  * 48  *  * * |  1 0 0 1
x . o3o . x4/3*d   16 |   8   0  24 |  0   0  12   0  12  0 |  0  0   0   6  0  0  2  0 |  *  *  *  * 24  * * |  0 1 0 1
x . . o3x4x4/3*d   48 |  24  48  48 |  0  24  24  16  12 12 |  0  0   8   6  6  0  0  2 |  *  *  *  *  * 24 * |  0 0 1 1
. . o3o3x4x4/3*d   64 |   0  96  96 |  0   0   0  64  48 24 |  0  0   0   0  0 16  8  8 |  *  *  *  *  *  * 3 |  0 0 0 2
-----------------+-----+-------------+-----------------------+---------------------------+---------------------+---------
x3o o3o3x .        12 |  12  18   0 |  4  18   0  12   0  0 |  6  0  12   0  0  3  0  0 |  4  0  0  3  0  0 0 | 16 * * *
x3o o3o . x4/3*d   24 |  24   0  36 |  8   0  36   0  18  0 |  0 12   0  18  0  0  3  0 |  0  6  0  0  3  0 0 |  * 8 * *
x3o . o3x4x4/3*d   72 |  72  72  72 | 24  72  72  24  18 18 | 24 24  24  18 18  0  0  3 |  8  6  6  0  0  3 0 |  * * 8 *
x . o3o3x4x4/3*d  128 |  64 192 192 |  0  96  96 128  96 48 |  0  0  64  48 24 32 16 16 |  0  0  0 16  8  8 2 |  * * * 3

© 2004-2024
top of page