Acronym | trasinnont |
Name | (triangle,sinnont)-duoprism |
Circumradius | sqrt[(25+6 sqrt(2))/12] = 1.670461 |
Face vector | 480, 2400, 4000, 3400, 1636, 439, 55 |
Confer |
|
As abstract polytope trasinnont is isomorphic to traginnont, thereby replacing octagons by octagrams, resp. op by stop and socco by gocco, resp. todip by tistodip, soccope by goccope, and steth by gittith, resp. trasocco by tragocco, stethip by gittithip, and sinnont by ginnont, resp. trasteth by tragittith and sinnontip by ginnontip.
Incidence matrix according to Dynkin symbol
x3o o3o3o3x4x4/3*e . . . . . . . | 480 | 2 4 4 | 1 8 8 6 6 4 | 4 4 12 12 8 4 4 6 | 6 6 4 8 8 12 1 1 4 | 4 4 6 2 2 8 1 | 1 1 4 2 -------------------+-----+-------------+-------------------------+---------------------------------+---------------------------------+----------------------+----------- x . . . . . . | 2 | 480 * * | 1 4 4 0 0 0 | 4 4 6 6 4 0 0 0 | 6 6 4 4 4 6 0 0 0 | 4 4 6 1 1 4 0 | 1 1 4 1 . . . . . x . | 2 | * 960 * | 0 2 0 3 0 1 | 1 0 6 0 2 3 0 3 | 3 0 1 6 0 6 1 0 3 | 3 0 3 2 0 6 1 | 1 0 3 2 . . . . . . x | 2 | * * 960 | 0 0 2 0 3 1 | 0 1 0 6 2 0 3 3 | 0 3 1 0 6 6 0 1 3 | 0 3 3 0 2 6 1 | 0 1 3 2 -------------------+-----+-------------+-------------------------+---------------------------------+---------------------------------+----------------------+----------- x3o . . . . . | 3 | 3 0 0 | 160 * * * * * | 4 4 0 0 0 0 0 0 | 6 6 4 0 0 0 0 0 0 | 4 4 6 0 0 0 0 | 1 1 4 0 x . . . . x . | 4 | 2 2 0 | * 960 * * * * | 1 0 3 0 1 0 0 0 | 3 0 1 3 0 3 0 0 0 | 3 0 3 1 0 3 0 | 1 0 3 1 x . . . . . x | 4 | 2 0 2 | * * 960 * * * | 0 1 0 3 1 0 0 0 | 0 3 1 0 3 3 0 0 0 | 0 3 3 0 1 3 0 | 0 1 3 1 . . . . o3x . | 3 | 0 3 0 | * * * 960 * * | 0 0 2 0 0 2 0 1 | 1 0 0 4 0 2 1 0 2 | 2 0 1 2 0 4 1 | 1 0 2 2 . . . . o . x4/3*e | 4 | 0 0 4 | * * * * 720 * | 0 0 0 2 0 0 2 1 | 0 1 0 0 4 2 0 1 2 | 0 2 1 0 2 4 1 | 0 1 2 2 . . . . . x4x | 8 | 0 4 4 | * * * * * 240 | 0 0 0 0 2 0 0 3 | 0 0 1 0 0 6 0 0 3 | 0 0 3 0 0 6 1 | 0 0 3 2 -------------------+-----+-------------+-------------------------+---------------------------------+---------------------------------+----------------------+----------- x3o . . . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | 320 * * * * * * * | 3 0 1 0 0 0 0 0 0 | 3 0 3 0 0 0 0 | 1 0 3 0 x3o . . . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * 320 * * * * * * | 0 3 1 0 0 0 0 0 0 | 0 3 3 0 0 0 0 | 0 1 3 0 x . . . o3x . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * 960 * * * * * | 1 0 0 2 0 1 0 0 0 | 2 0 1 1 0 2 0 | 1 0 2 1 x . . . o . x4/3*e ♦ 8 | 4 0 8 | 0 0 4 0 2 0 | * * * 720 * * * * | 0 1 0 0 2 1 0 0 0 | 0 2 1 0 1 2 0 | 0 1 2 1 x . . . . x4x ♦ 16 | 8 8 8 | 0 4 4 0 0 2 | * * * * 240 * * * | 0 0 1 0 0 3 0 0 0 | 0 0 3 0 0 3 0 | 0 0 3 1 . . . o3o3x . ♦ 4 | 0 6 0 | 0 0 0 4 0 0 | * * * * * 480 * * | 0 0 0 2 0 0 1 0 1 | 1 0 0 2 0 2 1 | 1 0 1 2 . . . o3o . x4/3*e ♦ 8 | 0 0 12 | 0 0 0 0 6 0 | * * * * * * 240 * | 0 0 0 0 2 0 0 1 1 | 0 1 0 0 2 2 1 | 0 1 1 2 . . . . o3x4x4/3*e ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * * * 120 | 0 0 0 0 0 2 0 0 2 | 0 0 1 0 0 4 1 | 0 0 2 2 -------------------+-----+-------------+-------------------------+---------------------------------+---------------------------------+----------------------+----------- x3o . . o3x . ♦ 9 | 9 9 0 | 3 9 0 3 0 0 | 3 0 3 0 0 0 0 0 | 320 * * * * * * * * | 2 0 1 0 0 0 0 | 1 0 2 0 x3o . . o . x4/3*e ♦ 12 | 12 0 12 | 4 0 12 0 3 0 | 0 4 0 3 0 0 0 0 | * 240 * * * * * * * | 0 2 1 0 0 0 0 | 0 1 2 0 x3o . . . x4x ♦ 24 | 24 12 12 | 8 12 12 0 0 3 | 4 4 0 0 3 0 0 0 | * * 80 * * * * * * | 0 0 3 0 0 0 0 | 0 0 3 0 x . . o3o3x . ♦ 8 | 4 12 0 | 0 6 0 8 0 0 | 0 0 4 0 0 2 0 0 | * * * 480 * * * * * | 1 0 0 1 0 1 0 | 1 0 1 1 x . . o3o . x4/3*e ♦ 16 | 8 0 24 | 0 0 12 0 12 0 | 0 0 0 6 0 0 2 0 | * * * * 240 * * * * | 0 1 0 0 1 1 0 | 0 1 1 1 x . . . o3x4x4/3*e ♦ 48 | 24 48 48 | 0 24 24 16 12 12 | 0 0 8 6 6 0 0 2 | * * * * * 120 * * * | 0 0 1 0 0 2 0 | 0 0 2 1 . . o3o3o3x . ♦ 5 | 0 10 0 | 0 0 0 10 0 0 | 0 0 0 0 0 5 0 0 | * * * * * * 96 * * | 0 0 0 2 0 0 1 | 1 0 0 2 . . o3o3o . x4/3*e ♦ 16 | 0 0 32 | 0 0 0 0 24 0 | 0 0 0 0 0 0 8 0 | * * * * * * * 30 * | 0 0 0 0 2 0 1 | 0 1 0 2 . . . o3o3x4x4/3*e ♦ 64 | 0 96 96 | 0 0 0 64 48 24 | 0 0 0 0 0 16 8 8 | * * * * * * * * 30 | 0 0 0 0 0 2 1 | 0 0 1 2 -------------------+-----+-------------+-------------------------+---------------------------------+---------------------------------+----------------------+----------- x3o . o3o3x . ♦ 12 | 12 18 0 | 4 18 0 12 0 0 | 6 0 12 0 0 3 0 0 | 4 0 0 3 0 0 0 0 0 | 160 * * * * * * | 1 0 1 0 x3o . o3o . x4/3*e ♦ 24 | 24 0 36 | 8 0 36 0 18 0 | 0 12 0 18 0 0 3 0 | 0 6 0 0 3 0 0 0 0 | * 80 * * * * * | 0 1 1 0 x3o . . o3x4x4/3*e ♦ 72 | 72 72 72 | 24 72 72 24 18 18 | 24 24 24 18 18 0 0 3 | 8 6 6 0 0 3 0 0 0 | * * 40 * * * * | 0 0 2 0 x . o3o3o3x . ♦ 10 | 5 20 0 | 0 10 0 20 0 0 | 0 0 10 0 0 10 0 0 | 0 0 0 5 0 0 2 0 0 | * * * 96 * * * | 1 0 0 1 x . o3o3o . x4/3*e ♦ 32 | 16 0 64 | 0 0 32 0 48 0 | 0 0 0 24 0 0 16 0 | 0 0 0 0 8 0 0 2 0 | * * * * 30 * * | 0 1 0 1 x . . o3o3x4x4/3*e ♦ 128 | 64 192 192 | 0 96 96 128 96 48 | 0 0 64 48 24 32 16 16 | 0 0 0 16 8 8 0 0 2 | * * * * * 30 * | 0 0 1 1 . . o3o3o3x4x4/3*e ♦ 160 | 0 320 320 | 0 0 0 320 240 80 | 0 0 0 0 0 160 80 40 | 0 0 0 0 0 0 32 10 10 | * * * * * * 3 | 0 0 0 2 -------------------+-----+-------------+-------------------------+---------------------------------+---------------------------------+----------------------+----------- x3o o3o3o3x . ♦ 15 | 15 30 0 | 5 30 0 30 0 0 | 10 0 30 0 0 15 0 0 | 10 0 0 15 0 0 3 0 0 | 5 0 0 3 0 0 0 | 32 * * * x3o o3o3o . x4/3*e ♦ 48 | 48 0 96 | 16 0 96 0 72 0 | 0 32 0 72 0 0 24 0 | 0 24 0 0 24 0 0 3 0 | 0 8 0 0 3 0 0 | * 10 * * x3o . o3o3x4x4/3*e ♦ 192 | 192 288 288 | 64 288 288 192 144 72 | 96 96 192 144 72 48 24 24 | 64 48 24 48 24 24 0 0 3 | 16 8 8 0 0 3 0 | * * 10 * x . o3o3o3x4x4/3*e ♦ 320 | 160 640 640 | 0 320 320 640 480 160 | 0 0 320 240 80 320 160 80 | 0 0 0 160 80 40 64 20 20 | 0 0 0 32 10 10 2 | * * * 3
© 2004-2025 | top of page |