Acronym ginnontip Name ginnont prism Circumradius sqrt[(4-sqrt(2))/2] = 1.137055

As abstract polytope ginnontip is isomorphic to sinnontip, thereby replacing octagrams by octagons, resp. stop by op and gocco by socco, resp. goccope by soccope and gittith by steth, resp. gittithip by stethip and ginnont by sinnont.

Incidence matrix according to Dynkin symbol

```x o3o3o3x4/3x4*d

. . . . .   .    | 320 |   1   4   4 |   4   4   6   6   4 |   6   6  4   4   4  6 |   4  4  6  1  1  4 |  1  1  4 1
-----------------+-----+-------------+---------------------+-----------------------+--------------------+-----------
x . . . .   .    |   2 | 160   *   * |   4   4   0   0   0 |   6   6  4   0   0  0 |   4  4  6  0  0  0 |  1  1  4 0
. . . . x   .    |   2 |   * 640   * |   1   0   3   0   1 |   3   0  1   3   0  3 |   3  0  3  1  0  3 |  1  0  3 1
. . . . .   x    |   2 |   *   * 640 |   0   1   0   3   1 |   0   3  1   0   3  3 |   0  3  3  0  1  3 |  0  1  3 1
-----------------+-----+-------------+---------------------+-----------------------+--------------------+-----------
x . . . x   .    |   4 |   2   2   0 | 320   *   *   *   * |   3   0  1   0   0  0 |   3  0  3  0  0  0 |  1  0  3 0
x . . . .   x    |   4 |   2   0   2 |   * 320   *   *   * |   0   3  1   0   0  0 |   0  3  3  0  0  0 |  0  1  3 0
. . . o3x   .    |   3 |   0   3   0 |   *   * 640   *   * |   1   0  0   2   0  1 |   2  0  1  1  0  2 |  1  0  2 1
. . . o .   x4*d |   4 |   0   0   4 |   *   *   * 480   * |   0   1  0   0   2  1 |   0  2  1  0  1  2 |  0  1  2 1
. . . . x4/3x    |   8 |   0   4   4 |   *   *   *   * 160 |   0   0  1   0   0  3 |   0  0  3  0  0  3 |  0  0  3 1
-----------------+-----+-------------+---------------------+-----------------------+--------------------+-----------
x . . o3x   .    ♦   6 |   3   6   0 |   3   0   2   0   0 | 320   *  *   *   *  * |   2  0  1  0  0  0 |  1  0  2 0
x . . o .   x4*d ♦   8 |   4   0   8 |   0   4   0   2   0 |   * 240  *   *   *  * |   0  2  1  0  0  0 |  0  1  2 0
x . . . x4/3x    ♦  16 |   8   8   8 |   4   4   0   0   2 |   *   * 80   *   *  * |   0  0  3  0  0  0 |  0  0  3 0
. . o3o3x   .    ♦   4 |   0   6   0 |   0   0   4   0   0 |   *   *  * 320   *  * |   1  0  0  1  0  1 |  1  0  1 1
. . o3o .   x4*d ♦   8 |   0   0  12 |   0   0   0   6   0 |   *   *  *   * 160  * |   0  1  0  0  1  1 |  0  1  1 1
. . . o3x4/3x4*d ♦  24 |   0  24  24 |   0   0   8   6   6 |   *   *  *   *   * 80 |   0  0  1  0  0  2 |  0  0  2 1
-----------------+-----+-------------+---------------------+-----------------------+--------------------+-----------
x . o3o3x   .    ♦   8 |   4  12   0 |   6   0   8   0   0 |   4   0  0   2   0  0 | 160  *  *  *  *  * |  1  0  1 0
x . o3o .   x4*d ♦  16 |   8   0  24 |   0  12   0  12   0 |   0   6  0   0   2  0 |   * 80  *  *  *  * |  0  1  1 0
x . . o3x4/3x4*d ♦  48 |  24  48  48 |  24  24  16  12  12 |   8   6  6   0   0  2 |   *  * 40  *  *  * |  0  0  2 0
. o3o3o3x   .    ♦   5 |   0  10   0 |   0   0  10   0   0 |   0   0  0   5   0  0 |   *  *  * 64  *  * |  1  0  0 1
. o3o3o .   x4*d ♦  16 |   0   0  32 |   0   0   0  24   0 |   0   0  0   0   8  0 |   *  *  *  * 20  * |  0  1  0 1
. . o3o3x4/3x4*d ♦  64 |   0  96  96 |   0   0  64  48  24 |   0   0  0  16   8  8 |   *  *  *  *  * 20 |  0  0  1 1
-----------------+-----+-------------+---------------------+-----------------------+--------------------+-----------
x o3o3o3x   .    ♦  10 |   5  20   0 |  10   0  20   0   0 |  10   0  0  10   0  0 |   5  0  0  2  0  0 | 32  *  * *
x o3o3o .   x4*d ♦  32 |  16   0  64 |   0  32   0  48   0 |   0  24  0   0  16  0 |   0  8  0  0  2  0 |  * 10  * *
x . o3o3x4/3x4*d ♦ 128 |  64 192 192 |  96  96 128  96  48 |  64  48 24  32  16 16 |  16  8  8  0  0  2 |  *  * 10 *
. o3o3o3x4/3x4*d ♦ 160 |   0 320 320 |   0   0 320 240  80 |   0   0  0 160  80 40 |   0  0  0 32 10 10 |  *  *  * 2
```

 © 2004-2021 top of page