Acronym soccopen Name (socco,pen)-duoprism Circumradius sqrt[(33+10 sqrt(2))/20] = 1.535287

As abstract polytope soccopen is isomoph to goccopen, then replacing octagons by octagrams, resp. op by stop and socco by gocco, resp. todip by tistodip and soccope by goccope, resp. otet by stotet and trasocco by tragocco, resp. open by stopen and tetsocco by tetgocco.

Incidence matrix according to Dynkin symbol

```x3o3o3o o3x4x4/3*e

. . . . . . .      | 120 |   4   2   2 |   6   8   8  1  1  2 |   4  12  12  4  4  8 1 |  1   8   8  6  6 12  4 |  2  2  4  4  8  6 | 1 1 2 4
-------------------+-----+-------------+----------------------+------------------------+------------------------+-------------------+--------
x . . . . . .      |   2 | 240   *   * |   3   2   2  0  0  0 |   3   6   6  1  1  2 0 |  1   6   6  3  3  6  1 |  2  2  3  3  6  3 | 1 1 2 3
. . . . . x .      |   2 |   * 120   * |   0   4   0  1  0  1 |   0   6   0  4  0  4 1 |  0   4   0  6  0  6  4 |  1  0  4  0  4  6 | 1 0 1 4
. . . . . . x      |   2 |   *   * 120 |   0   0   4  0  1  1 |   0   0   6  0  4  4 1 |  0   0   4  0  6  6  4 |  0  1  0  4  4  6 | 0 1 1 4
-------------------+-----+-------------+----------------------+------------------------+------------------------+-------------------+--------
x3o . . . . .      |   3 |   3   0   0 | 240   *   *  *  *  * |   2   2   2  0  0  0 0 |  1   4   4  1  1  2  0 |  2  2  2  2  4  1 | 1 1 2 2
x . . . . x .      |   4 |   2   2   0 |   * 240   *  *  *  * |   0   3   0  1  0  1 0 |  0   3   0  3  0  3  1 |  1  0  3  0  3  3 | 1 0 1 3
x . . . . . x      |   4 |   2   0   2 |   *   * 240  *  *  * |   0   0   3  0  1  1 0 |  0   0   3  0  3  3  1 |  0  1  0  3  3  3 | 0 1 1 3
. . . . o3x .      |   3 |   0   3   0 |   *   *   * 40  *  * |   0   0   0  4  0  0 1 |  0   0   0  6  0  0  4 |  0  0  4  0  0  6 | 1 0 0 4
. . . . o . x4/3*e |   4 |   0   0   4 |   *   *   *  * 30  * |   0   0   0  0  4  0 1 |  0   0   0  0  6  0  4 |  0  0  0  4  0  6 | 0 1 0 4
. . . . . x4x      |   8 |   0   4   4 |   *   *   *  *  * 30 |   0   0   0  0  0  4 1 |  0   0   0  0  0  6  4 |  0  0  0  0  4  6 | 0 0 1 4
-------------------+-----+-------------+----------------------+------------------------+------------------------+-------------------+--------
x3o3o . . . .      ♦   4 |   6   0   0 |   4   0   0  0  0  0 | 120   *   *  *  *  * * |  1   2   2  0  0  0  0 |  2  2  1  1  2  0 | 1 1 2 1
x3o . . . x .      ♦   6 |   6   3   0 |   2   3   0  0  0  0 |   * 240   *  *  *  * * |  0   2   0  1  0  1  0 |  1  0  2  0  2  1 | 1 0 1 2
x3o . . . . x      ♦   6 |   6   0   3 |   2   0   3  0  0  0 |   *   * 240  *  *  * * |  0   0   2  0  1  1  0 |  0  1  0  2  2  1 | 0 1 1 2
x . . . o3x .      ♦   6 |   3   6   0 |   0   3   0  2  0  0 |   *   *   * 80  *  * * |  0   0   0  3  0  0  1 |  0  0  3  0  0  3 | 1 0 0 3
x . . . o . x4/3*e ♦   8 |   4   0   8 |   0   0   4  0  2  0 |   *   *   *  * 60  * * |  0   0   0  0  3  0  1 |  0  0  0  3  0  3 | 0 1 0 3
x . . . . x4x      ♦  16 |   8   8   8 |   0   4   4  0  0  2 |   *   *   *  *  * 60 * |  0   0   0  0  0  3  1 |  0  0  0  0  3  3 | 0 0 1 3
. . . . o3x4x4/3*e ♦  24 |   0  24  24 |   0   0   0  8  6  6 |   *   *   *  *  *  * 5 ♦  0   0   0  0  0  0  4 |  0  0  0  0  0  6 | 0 0 0 4
-------------------+-----+-------------+----------------------+------------------------+------------------------+-------------------+--------
x3o3o3o . . .      ♦   5 |  10   0   0 |  10   0   0  0  0  0 |   5   0   0  0  0  0 0 | 24   *   *  *  *  *  * |  2  2  0  0  0  0 | 1 1 2 0
x3o3o . . x .      ♦   8 |  12   4   0 |   8   6   0  0  0  0 |   2   4   0  0  0  0 0 |  * 120   *  *  *  *  * |  1  0  1  0  1  0 | 1 0 1 1
x3o3o . . . x      ♦   8 |  12   0   4 |   8   0   6  0  0  0 |   2   0   4  0  0  0 0 |  *   * 120  *  *  *  * |  0  1  0  1  1  0 | 0 1 1 1
x3o . . o3x .      ♦   9 |   9   9   0 |   3   9   0  3  0  0 |   0   3   0  3  0  0 0 |  *   *   * 80  *  *  * |  0  0  2  0  0  1 | 1 0 0 2
x3o . . o . x4/3*e ♦  12 |  12   0  12 |   4   0  12  0  3  0 |   0   0   4  0  3  0 0 |  *   *   *  * 60  *  * |  0  0  0  2  0  1 | 0 1 0 2
x3o . . . x4x      ♦  24 |  24  12  12 |   8  12  12  0  0  3 |   0   4   4  0  0  3 0 |  *   *   *  *  * 60  * |  0  0  0  0  2  1 | 0 0 1 2
x . . . o3x4x4/3*e ♦  48 |  24  48  48 |   0  24  24 16 12 12 |   0   0   0  8  6  6 2 |  *   *   *  *  *  * 10 |  0  0  0  0  0  3 | 0 0 0 3
-------------------+-----+-------------+----------------------+------------------------+------------------------+-------------------+--------
x3o3o3o . x .      ♦  10 |  20   5   0 |  20  10   0  0  0  0 |  10  10   0  0  0  0 0 |  2   5   0  0  0  0  0 | 24  *  *  *  *  * | 1 0 1 0
x3o3o3o . . x      ♦  10 |  20   0   5 |  20   0  10  0  0  0 |  10   0  10  0  0  0 0 |  2   0   5  0  0  0  0 |  * 24  *  *  *  * | 0 1 1 0
x3o3o . o3x .      ♦  12 |  18  12   0 |  12  18   0  4  0  0 |   3  12   0  6  0  0 0 |  0   3   0  4  0  0  0 |  *  * 40  *  *  * | 1 0 0 1
x3o3o . o . x4/3*e ♦  16 |  24   0  16 |  16   0  24  0  4  0 |   4   0  16  0  6  0 0 |  0   0   4  0  4  0  0 |  *  *  * 30  *  * | 0 1 0 1
x3o3o . . x4x      ♦  32 |  48  16  16 |  32  24  24  0  0  4 |   8  16  16  0  0  6 0 |  0   4   4  0  0  4  0 |  *  *  *  * 30  * | 0 0 1 1
x3o . . o3x4x4/3*e ♦  72 |  72  72  72 |  24  72  72 24 18 18 |   0  24  24 24 18 18 3 |  0   0   0  8  6  6  3 |  *  *  *  *  * 10 | 0 0 0 2
-------------------+-----+-------------+----------------------+------------------------+------------------------+-------------------+--------
x3o3o3o o3x .      ♦  15 |  30  15   0 |  30  30   0  5  0  0 |  15  30   0 10  0  0 0 |  3  15   0 10  0  0  0 |  3  0  5  0  0  0 | 8 * * *
x3o3o3o o . x4/3*e ♦  20 |  40   0  20 |  40   0  40  0  5  0 |  20   0  40  0 10  0 0 |  4   0  20  0 10  0  0 |  0  4  0  5  0  0 | * 6 * *
x3o3o3o . x4x      ♦  40 |  80  20  20 |  80  40  40  0  0  5 |  40  40  40  0  0 10 0 |  8  20  20  0  0 10  0 |  4  4  0  0  5  0 | * * 6 *
x3o3o . o3x4x4/3*e ♦  96 | 144  96  96 |  96 144 144 32 24 24 |  24  96  96 48 36 36 4 |  0  24  24 32 24 24  6 |  0  0  8  6  6  4 | * * * 5
```

 © 2004-2022 top of page