Acronym | goccopen |
Name | (gocco,pen)-duoprism |
Circumradius | sqrt[(33-10 sqrt(2))/20] = 0.971027 |
Face vector | 120, 480, 820, 805, 474, 158, 25 |
Confer |
|
As abstract polytope goccopen is isomoph to soccopen, then replacing octagrams by octagons, resp. stop by op and gocco by socco, resp. tistodip by todip and goccope by soccope, resp. stotet by otet and tragocco by trasocco, resp. stopen by open and tetgocco by tetsocco.
Incidence matrix according to Dynkin symbol
x3o3o3o o3x4/3x4*e . . . . . . . | 120 | 4 2 2 | 6 8 8 1 1 2 | 4 12 12 4 4 8 1 | 1 8 8 6 6 12 4 | 2 2 4 4 8 6 | 1 1 2 4 -------------------+-----+-------------+----------------------+------------------------+------------------------+-------------------+-------- x . . . . . . | 2 | 240 * * | 3 2 2 0 0 0 | 3 6 6 1 1 2 0 | 1 6 6 3 3 6 1 | 2 2 3 3 6 3 | 1 1 2 3 . . . . . x . | 2 | * 120 * | 0 4 0 1 0 1 | 0 6 0 4 0 4 1 | 0 4 0 6 0 6 4 | 1 0 4 0 4 6 | 1 0 1 4 . . . . . . x | 2 | * * 120 | 0 0 4 0 1 1 | 0 0 6 0 4 4 1 | 0 0 4 0 6 6 4 | 0 1 0 4 4 6 | 0 1 1 4 -------------------+-----+-------------+----------------------+------------------------+------------------------+-------------------+-------- x3o . . . . . | 3 | 3 0 0 | 240 * * * * * | 2 2 2 0 0 0 0 | 1 4 4 1 1 2 0 | 2 2 2 2 4 1 | 1 1 2 2 x . . . . x . | 4 | 2 2 0 | * 240 * * * * | 0 3 0 1 0 1 0 | 0 3 0 3 0 3 1 | 1 0 3 0 3 3 | 1 0 1 3 x . . . . . x | 4 | 2 0 2 | * * 240 * * * | 0 0 3 0 1 1 0 | 0 0 3 0 3 3 1 | 0 1 0 3 3 3 | 0 1 1 3 . . . . o3x . | 3 | 0 3 0 | * * * 40 * * | 0 0 0 4 0 0 1 | 0 0 0 6 0 0 4 | 0 0 4 0 0 6 | 1 0 0 4 . . . . o . x4*e | 4 | 0 0 4 | * * * * 30 * | 0 0 0 0 4 0 1 | 0 0 0 0 6 0 4 | 0 0 0 4 0 6 | 0 1 0 4 . . . . . x4/3x | 8 | 0 4 4 | * * * * * 30 | 0 0 0 0 0 4 1 | 0 0 0 0 0 6 4 | 0 0 0 0 4 6 | 0 0 1 4 -------------------+-----+-------------+----------------------+------------------------+------------------------+-------------------+-------- x3o3o . . . . ♦ 4 | 6 0 0 | 4 0 0 0 0 0 | 120 * * * * * * | 1 2 2 0 0 0 0 | 2 2 1 1 2 0 | 1 1 2 1 x3o . . . x . ♦ 6 | 6 3 0 | 2 3 0 0 0 0 | * 240 * * * * * | 0 2 0 1 0 1 0 | 1 0 2 0 2 1 | 1 0 1 2 x3o . . . . x ♦ 6 | 6 0 3 | 2 0 3 0 0 0 | * * 240 * * * * | 0 0 2 0 1 1 0 | 0 1 0 2 2 1 | 0 1 1 2 x . . . o3x . ♦ 6 | 3 6 0 | 0 3 0 2 0 0 | * * * 80 * * * | 0 0 0 3 0 0 1 | 0 0 3 0 0 3 | 1 0 0 3 x . . . o . x4*e ♦ 8 | 4 0 8 | 0 0 4 0 2 0 | * * * * 60 * * | 0 0 0 0 3 0 1 | 0 0 0 3 0 3 | 0 1 0 3 x . . . . x4/3x ♦ 16 | 8 8 8 | 0 4 4 0 0 2 | * * * * * 60 * | 0 0 0 0 0 3 1 | 0 0 0 0 3 3 | 0 0 1 3 . . . . o3x4/3x4*e ♦ 24 | 0 24 24 | 0 0 0 8 6 6 | * * * * * * 5 ♦ 0 0 0 0 0 0 4 | 0 0 0 0 0 6 | 0 0 0 4 -------------------+-----+-------------+----------------------+------------------------+------------------------+-------------------+-------- x3o3o3o . . . ♦ 5 | 10 0 0 | 10 0 0 0 0 0 | 5 0 0 0 0 0 0 | 24 * * * * * * | 2 2 0 0 0 0 | 1 1 2 0 x3o3o . . x . ♦ 8 | 12 4 0 | 8 6 0 0 0 0 | 2 4 0 0 0 0 0 | * 120 * * * * * | 1 0 1 0 1 0 | 1 0 1 1 x3o3o . . . x ♦ 8 | 12 0 4 | 8 0 6 0 0 0 | 2 0 4 0 0 0 0 | * * 120 * * * * | 0 1 0 1 1 0 | 0 1 1 1 x3o . . o3x . ♦ 9 | 9 9 0 | 3 9 0 3 0 0 | 0 3 0 3 0 0 0 | * * * 80 * * * | 0 0 2 0 0 1 | 1 0 0 2 x3o . . o . x4*e ♦ 12 | 12 0 12 | 4 0 12 0 3 0 | 0 0 4 0 3 0 0 | * * * * 60 * * | 0 0 0 2 0 1 | 0 1 0 2 x3o . . . x4/3x ♦ 24 | 24 12 12 | 8 12 12 0 0 3 | 0 4 4 0 0 3 0 | * * * * * 60 * | 0 0 0 0 2 1 | 0 0 1 2 x . . . o3x4/3x4*e ♦ 48 | 24 48 48 | 0 24 24 16 12 12 | 0 0 0 8 6 6 2 | * * * * * * 10 | 0 0 0 0 0 3 | 0 0 0 3 -------------------+-----+-------------+----------------------+------------------------+------------------------+-------------------+-------- x3o3o3o . x . ♦ 10 | 20 5 0 | 20 10 0 0 0 0 | 10 10 0 0 0 0 0 | 2 5 0 0 0 0 0 | 24 * * * * * | 1 0 1 0 x3o3o3o . . x ♦ 10 | 20 0 5 | 20 0 10 0 0 0 | 10 0 10 0 0 0 0 | 2 0 5 0 0 0 0 | * 24 * * * * | 0 1 1 0 x3o3o . o3x . ♦ 12 | 18 12 0 | 12 18 0 4 0 0 | 3 12 0 6 0 0 0 | 0 3 0 4 0 0 0 | * * 40 * * * | 1 0 0 1 x3o3o . o . x4*e ♦ 16 | 24 0 16 | 16 0 24 0 4 0 | 4 0 16 0 6 0 0 | 0 0 4 0 4 0 0 | * * * 30 * * | 0 1 0 1 x3o3o . . x4/3x ♦ 32 | 48 16 16 | 32 24 24 0 0 4 | 8 16 16 0 0 6 0 | 0 4 4 0 0 4 0 | * * * * 30 * | 0 0 1 1 x3o . . o3x4/3x4*e ♦ 72 | 72 72 72 | 24 72 72 24 18 18 | 0 24 24 24 18 18 3 | 0 0 0 8 6 6 3 | * * * * * 10 | 0 0 0 2 -------------------+-----+-------------+----------------------+------------------------+------------------------+-------------------+-------- x3o3o3o o3x . ♦ 15 | 30 15 0 | 30 30 0 5 0 0 | 15 30 0 10 0 0 0 | 3 15 0 10 0 0 0 | 3 0 5 0 0 0 | 8 * * * x3o3o3o o . x4*e ♦ 20 | 40 0 20 | 40 0 40 0 5 0 | 20 0 40 0 10 0 0 | 4 0 20 0 10 0 0 | 0 4 0 5 0 0 | * 6 * * x3o3o3o . x4/3x ♦ 40 | 80 20 20 | 80 40 40 0 0 5 | 40 40 40 0 0 10 0 | 8 20 20 0 0 10 0 | 4 4 0 0 5 0 | * * 6 * x3o3o . o3x4/3x4*e ♦ 96 | 144 96 96 | 96 144 144 32 24 24 | 24 96 96 48 36 36 4 | 0 24 24 32 24 24 6 | 0 0 8 6 6 4 | * * * 5
© 2004-2025 | top of page |