Acronym | saquid paxhi |
Name |
small quasidisprismatohexacosihecatonicosachoron, Holey Terror |
Cross sections |
© |
Circumradius | sqrt[3+sqrt(5)] = 2.288246 |
General of army | hi |
Colonel of regiment | sidtaxhi |
Confer |
|
External links |
The small quasidisprismatohexacosihecatonicosachoron can be obtained as an edge-faceting of the small ditetrahedronary hexacosihecatonicosachoron (sidtaxhi). As such it is a fissary polychoron (Type A), as its vertices are coincident by 4 and edges coincident by pairs. Thus it looks like Type B. That ones vertex figure is a (mostly empty) compound faceting of v3x3o.
As abstract polytope saquid paxhi is isomorphic to quad pagaxhi, thereby replacing pentagons by pentagrams, resp. replacing doe by gissid and pip by stip.
Incidence matrix according to Dynkin symbol
x3o3o5/4x – Type A . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 ----------+------+-----------+----------------+----------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 ----------+------+-----------+----------------+----------------- x3o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x | 4 | 2 2 | * 3600 * | 0 1 1 0 . . o5/4x | 5 | 0 5 | * * 1440 | 0 0 1 1 ----------+------+-----------+----------------+----------------- x3o3o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3o . x ♦ 6 | 6 3 | 2 3 0 | * 1200 * * x . o5/4x ♦ 10 | 5 10 | 0 5 2 | * * 720 * . o3o5/4x ♦ 20 | 0 30 | 0 0 12 | * * * 120
x3o3/2o5x – Type A . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 ----------+------+-----------+----------------+----------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 ----------+------+-----------+----------------+----------------- x3o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x | 4 | 2 2 | * 3600 * | 0 1 1 0 . . o5x | 5 | 0 5 | * * 1440 | 0 0 1 1 ----------+------+-----------+----------------+----------------- x3o3/2o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3o . x ♦ 6 | 6 3 | 2 3 0 | * 1200 * * x . o5x ♦ 10 | 5 10 | 0 5 2 | * * 720 * . o3/2o5x ♦ 20 | 0 30 | 0 0 12 | * * * 120
x3/2o3o5x – Type A . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 ----------+------+-----------+----------------+----------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 ----------+------+-----------+----------------+----------------- x3/2o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x | 4 | 2 2 | * 3600 * | 0 1 1 0 . . o5x | 5 | 0 5 | * * 1440 | 0 0 1 1 ----------+------+-----------+----------------+----------------- x3/2o3o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3/2o . x ♦ 6 | 6 3 | 2 3 0 | * 1200 * * x . o5x ♦ 10 | 5 10 | 0 5 2 | * * 720 * . o3o5x ♦ 20 | 0 30 | 0 0 12 | * * * 120
x3/2o3/2o5/4x – Type A . . . . | 2400 | 3 3 | 3 6 3 | 1 3 3 1 --------------+------+-----------+----------------+----------------- x . . . | 2 | 3600 * | 2 2 0 | 1 2 1 0 . . . x | 2 | * 3600 | 0 2 2 | 0 1 2 1 --------------+------+-----------+----------------+----------------- x3/2o . . | 3 | 3 0 | 2400 * * | 1 1 0 0 x . . x | 4 | 2 2 | * 3600 * | 0 1 1 0 . . o5/4x | 5 | 0 5 | * * 1440 | 0 0 1 1 --------------+------+-----------+----------------+----------------- x3/2o3/2o . ♦ 4 | 6 0 | 4 0 0 | 600 * * * x3/2o . x ♦ 6 | 6 3 | 2 3 0 | * 1200 * * x . o5/4x ♦ 10 | 5 10 | 0 5 2 | * * 720 * . o3/2o5/4x ♦ 20 | 0 30 | 0 0 12 | * * * 120
Type B 600 | 12 | 12 24 12 | 4 12 12 4 -----+------+----------------+----------------- 2 | 3600 | 2 4 2 | 1 3 3 1 -----+------+----------------+----------------- 3 | 3 | 2400 * * | 1 1 0 0 4 | 4 | * 3600 * | 0 1 1 0 5 | 5 | * * 1440 | 0 0 1 1 -----+------+----------------+----------------- ♦ 4 | 6 | 4 0 0 | 600 * * * ♦ 6 | 9 | 2 3 0 | * 1200 * * ♦ 10 | 15 | 0 5 2 | * * 720 * ♦ 20 | 30 | 0 0 12 | * * * 120
© 2004-2024 | top of page |