As abstract polytope sadtef pixady is isomorphic to gadtef pixady, thereby replacing pentagons by pentagrams, resp. gidtid by sidtid and srid by qrid.

This Grünbaumian polychoron is fissary as its vertex figure happens to be a compound of 4 xf3/2ox&#q – within the army of the vertex figure of sidtaxhi. By this vertex identification it can be seen that moreover the larger class of edges coincides intrinsically pairwise, and those further more then coincide one by one with those of the smaller class. Also both classes of triangles coincide one by one, thus it further becomes exotic.

Alternatively it could be obtained e.g. as a blend of sidtaxady and sirdtapady, blending out the doe.

Incidence matrix according to Dynkin symbol

```x3o3o3/2x5*b

. . .   .    | 2400 |    3    6 |    3    6    3    3 |   1   3    3   1
-------------+------+-----------+---------------------+-----------------
x . .   .    |    2 | 3600    * |    2    2    0    0 |   1   2    1   0
. . .   x    |    2 |    * 7200 |    0    1    1    1 |   0   1    1   1
-------------+------+-----------+---------------------+-----------------
x3o .   .    |    3 |    3    0 | 2400    *    *    * |   1   1    0   0
x . .   x    |    4 |    2    2 |    * 3600    *    * |   0   1    1   0
. o .   x5*b |    5 |    0    5 |    *    * 1440    * |   0   1    0   1
. . o3/2x    |    3 |    0    3 |    *    *    * 2400 |   0   0    1   1
-------------+------+-----------+---------------------+-----------------
x3o3o   .    ♦    4 |    6    0 |    4    0    0    0 | 600   *    *   *
x3o .   x5*b ♦   60 |   60   60 |   20   30   12    0 |   * 120    *   *
x . o3/2x    ♦    6 |    3    6 |    0    3    0    2 |   *   * 1200   *
. o3o3/2x5*b ♦   20 |    0   60 |    0    0   12   20 |   *   *    * 120
```

```x3o3/2o3x5*b

. .   . .    | 2400 |    3    6 |    3    6    3    3 |   1   3    3   1
-------------+------+-----------+---------------------+-----------------
x .   . .    |    2 | 3600    * |    2    2    0    0 |   1   2    1   0
. .   . x    |    2 |    * 7200 |    0    1    1    1 |   0   1    1   1
-------------+------+-----------+---------------------+-----------------
x3o   . .    |    3 |    3    0 | 2400    *    *    * |   1   1    0   0
x .   . x    |    4 |    2    2 |    * 3600    *    * |   0   1    1   0
. o   . x5*b |    5 |    0    5 |    *    * 1440    * |   0   1    0   1
. .   o3x    |    3 |    0    3 |    *    *    * 2400 |   0   0    1   1
-------------+------+-----------+---------------------+-----------------
x3o3/2o .    ♦    4 |    6    0 |    4    0    0    0 | 600   *    *   *
x3o   . x5*b ♦   60 |   60   60 |   20   30   12    0 |   * 120    *   *
x .   o3x    ♦    6 |    3    6 |    0    3    0    2 |   *   * 1200   *
. o3/2o3x5*b ♦   20 |    0   60 |    0    0   12   20 |   *   *    * 120
```

```x3/2o3o3x5/4*b

.   . . .      | 2400 |    3    6 |    3    6    3    3 |   1   3    3   1
---------------+------+-----------+---------------------+-----------------
x   . . .      |    2 | 3600    * |    2    2    0    0 |   1   2    1   0
.   . . x      |    2 |    * 7200 |    0    1    1    1 |   0   1    1   1
---------------+------+-----------+---------------------+-----------------
x3/2o . .      |    3 |    3    0 | 2400    *    *    * |   1   1    0   0
x   . . x      |    4 |    2    2 |    * 3600    *    * |   0   1    1   0
.   o . x5/4*b |    5 |    0    5 |    *    * 1440    * |   0   1    0   1
.   . o3x      |    3 |    0    3 |    *    *    * 2400 |   0   0    1   1
---------------+------+-----------+---------------------+-----------------
x3/2o3o .      ♦    4 |    6    0 |    4    0    0    0 | 600   *    *   *
x3/2o . x5/4*b ♦   60 |   60   60 |   20   30   12    0 |   * 120    *   *
x   . o3x      ♦    6 |    3    6 |    0    3    0    2 |   *   * 1200   *
.   o3o3x5/4*b ♦   20 |    0   60 |    0    0   12   20 |   *   *    * 120
```

```x3/2o3/2o3/2x5/4*b

.   .   .   .      | 2400 |    3    6 |    3    6    3    3 |   1   3    3   1
-------------------+------+-----------+---------------------+-----------------
x   .   .   .      |    2 | 3600    * |    2    2    0    0 |   1   2    1   0
.   .   .   x      |    2 |    * 7200 |    0    1    1    1 |   0   1    1   1
-------------------+------+-----------+---------------------+-----------------
x3/2o   .   .      |    3 |    3    0 | 2400    *    *    * |   1   1    0   0
x   .   .   x      |    4 |    2    2 |    * 3600    *    * |   0   1    1   0
.   o   .   x5/4*b |    5 |    0    5 |    *    * 1440    * |   0   1    0   1
.   .   o3/2x      |    3 |    0    3 |    *    *    * 2400 |   0   0    1   1
-------------------+------+-----------+---------------------+-----------------
x3/2o3/2o   .      ♦    4 |    6    0 |    4    0    0    0 | 600   *    *   *
x3/2o   .   x5/4*b ♦   60 |   60   60 |   20   30   12    0 |   * 120    *   *
x   .   o3/2x      ♦    6 |    3    6 |    0    3    0    2 |   *   * 1200   *
.   o3/2o3/2x5/4*b ♦   20 |    0   60 |    0    0   12   20 |   *   *    * 120
```