Acronym | sirdtaxady |
Name | small retroditetrahedronary hexacosidishecatonicosachoron |
Cross sections |
© |
Circumradius | sqrt[3+sqrt(5)] = 2.288246 |
General of army | hi |
Colonel of regiment | sidtaxhi |
Face vector | 600, 3600, 3840, 840 |
Confer |
|
External links |
As abstract polytope sirdtaxady is isomorphic to gadtaxady, thereby replacing the pentagons by pentagrams, resp. replacing doe by gissid and id by gid. – As such sirdtaxady is a lieutenant.
Incidence matrix according to Dynkin symbol
x3o3o3o5/4*a . . . . | 600 | 12 | 12 12 | 4 6 4 -------------+-----+------+-----------+------------ x . . . | 2 | 3600 | 2 2 | 1 2 1 -------------+-----+------+-----------+------------ x3o . . | 3 | 3 | 2400 * | 1 1 0 x . . o5/4*a | 5 | 5 | * 1440 | 0 1 1 -------------+-----+------+-----------+------------ x3o3o . ♦ 4 | 6 | 4 0 | 600 * * x3o . o5/4*a ♦ 30 | 60 | 20 12 | * 120 * x . o3o5/4*a ♦ 12 | 30 | 0 12 | * * 120
x3o3o3/2o5*a . . . . | 600 | 12 | 12 12 | 4 6 4 -------------+-----+------+-----------+------------ x . . . | 2 | 3600 | 2 2 | 1 2 1 -------------+-----+------+-----------+------------ x3o . . | 3 | 3 | 2400 * | 1 1 0 x . . o5*a | 5 | 5 | * 1440 | 0 1 1 -------------+-----+------+-----------+------------ x3o3o . ♦ 4 | 6 | 4 0 | 600 * * x3o . o5*a ♦ 30 | 60 | 20 12 | * 120 * x . o3/2o5*a ♦ 12 | 30 | 0 12 | * * 120
x3o3/2o3o5*a . . . . | 600 | 12 | 12 12 | 4 6 4 -------------+-----+------+-----------+------------ x . . . | 2 | 3600 | 2 2 | 1 2 1 -------------+-----+------+-----------+------------ x3o . . | 3 | 3 | 2400 * | 1 1 0 x . . o5*a | 5 | 5 | * 1440 | 0 1 1 -------------+-----+------+-----------+------------ x3o3/2o . ♦ 4 | 6 | 4 0 | 600 * * x3o . o5*a ♦ 30 | 60 | 20 12 | * 120 * x . o3o5*a ♦ 12 | 30 | 0 12 | * * 120
x3o3/2o3/2o5/4*a . . . . | 600 | 12 | 12 12 | 4 6 4 -----------------+-----+------+-----------+------------ x . . . | 2 | 3600 | 2 2 | 1 2 1 -----------------+-----+------+-----------+------------ x3o . . | 3 | 3 | 2400 * | 1 1 0 x . . o5/4*a | 5 | 5 | * 1440 | 0 1 1 -----------------+-----+------+-----------+------------ x3o3/2o . ♦ 4 | 6 | 4 0 | 600 * * x3o . o5/4*a ♦ 30 | 60 | 20 12 | * 120 * x . o3/2o5/4*a ♦ 12 | 30 | 0 12 | * * 120
x3/2o3o3o5*a . . . . | 600 | 12 | 12 12 | 4 6 4 -------------+-----+------+-----------+------------ x . . . | 2 | 3600 | 2 2 | 1 2 1 -------------+-----+------+-----------+------------ x3/2o . . | 3 | 3 | 2400 * | 1 1 0 x . . o5*a | 5 | 5 | * 1440 | 0 1 1 -------------+-----+------+-----------+------------ x3/2o3o . ♦ 4 | 6 | 4 0 | 600 * * x3/2o . o5*a ♦ 30 | 60 | 20 12 | * 120 * x . o3o5*a ♦ 12 | 30 | 0 12 | * * 120
x3/2o3o3/2o5/4*a . . . . | 600 | 12 | 12 12 | 4 6 4 -----------------+-----+------+-----------+------------ x . . . | 2 | 3600 | 2 2 | 1 2 1 -----------------+-----+------+-----------+------------ x3/2o . . | 3 | 3 | 2400 * | 1 1 0 x . . o5/4*a | 5 | 5 | * 1440 | 0 1 1 -----------------+-----+------+-----------+------------ x3/2o3o . ♦ 4 | 6 | 4 0 | 600 * * x3/2o . o5/4*a ♦ 30 | 60 | 20 12 | * 120 * x . o3/2o5/4*a ♦ 12 | 30 | 0 12 | * * 120
x3/2o3/2o3o5/4*a . . . . | 600 | 12 | 12 12 | 4 6 4 -----------------+-----+------+-----------+------------ x . . . | 2 | 3600 | 2 2 | 1 2 1 -----------------+-----+------+-----------+------------ x3/2o . . | 3 | 3 | 2400 * | 1 1 0 x . . o5/4*a | 5 | 5 | * 1440 | 0 1 1 -----------------+-----+------+-----------+------------ x3/2o3/2o . ♦ 4 | 6 | 4 0 | 600 * * x3/2o . o5/4*a ♦ 30 | 60 | 20 12 | * 120 * x . o3o5/4*a ♦ 12 | 30 | 0 12 | * * 120
x3/2o3/2o3/2o5*a . . . . | 600 | 12 | 12 12 | 4 6 4 -----------------+-----+------+-----------+------------ x . . . | 2 | 3600 | 2 2 | 1 2 1 -----------------+-----+------+-----------+------------ x3/2o . . | 3 | 3 | 2400 * | 1 1 0 x . . o5*a | 5 | 5 | * 1440 | 0 1 1 -----------------+-----+------+-----------+------------ x3/2o3/2o . ♦ 4 | 6 | 4 0 | 600 * * x3/2o . o5*a ♦ 30 | 60 | 20 12 | * 120 * x . o3/2o5*a ♦ 12 | 30 | 0 12 | * * 120
© 2004-2025 | top of page |