Acronym | gacnet |
Name |
great cellated penteractitriacontiditeron, omnitruncated penteract, omnitruncated pentacross |
Field of sections |
© |
Circumradius | sqrt[65+20 sqrt(2)]/2 = 4.829189 |
Inradius wrt. hodip | sqrt[57+18 sqrt(2)]/2 = 4.540260 |
Inradius wrt. tope | sqrt[(27+10 sqrt(2))/2] = 4.535534 |
Inradius wrt. gippid | sqrt[45+20 sqrt(2)]/2 = 4.280312 |
Inradius wrt. gircope | (7+sqrt(2))/2 = 4.207107 |
Inradius wrt. gidpith | sqrt[33+8 sqrt(2)]/2 = 3.328427 |
Vertex figure |
© © |
Coordinates | ((1+4 sqrt(2))/2, (1+3 sqrt(2))/2, (1+2 sqrt(2))/2, (1+sqrt(2))/2, 1/2) & all permutations, all changes of sign |
Volume | 2[2053+1564 sqrt(2)] = 8529.660023 |
Dihedral angles |
|
Face vector | 3840, 9600, 8160, 2640, 242 |
Confer |
|
External links |
As abstract polytope gacnet is isomorphic to gaquacint, thereby replacing octagons by octagrams, resp. op by stop and girco by quitco, resp. hodip by histodip, gircope by quitcope, and gidpith by gaquidpoth.
Incidence matrix according to Dynkin symbol
x3x3x3x4x . . . . . | 3840 | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 ----------+------+--------------------------+-----------------------------------------+----------------------------------------+--------------- x . . . . | 2 | 1920 * * * * | 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 . x . . . | 2 | * 1920 * * * | 1 0 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . x . . | 2 | * * 1920 * * | 0 1 0 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * * 1920 * | 0 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * * 1920 | 0 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ----------+------+--------------------------+-----------------------------------------+----------------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 0 | 640 * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 0 2 0 0 | * 960 * * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 0 2 0 | * * 960 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 0 2 | * * * 960 * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3x . . | 6 | 0 3 3 0 0 | * * * * 640 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 0 2 0 | * * * * * 960 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 0 2 | * * * * * * 960 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3x . | 6 | 0 0 3 3 0 | * * * * * * * 640 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x | 4 | 0 0 2 0 2 | * * * * * * * * 960 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x4x | 8 | 0 0 0 4 4 | * * * * * * * * * 480 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ----------+------+--------------------------+-----------------------------------------+----------------------------------------+--------------- x3x3x . . ♦ 24 | 12 12 12 0 0 | 4 6 0 0 4 0 0 0 0 0 | 160 * * * * * * * * * | 1 1 0 0 0 x3x . x . ♦ 12 | 6 6 0 6 0 | 2 0 3 0 0 3 0 0 0 0 | * 320 * * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 0 6 | 2 0 0 3 0 0 3 0 0 0 | * * 320 * * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 0 | 0 3 3 0 0 0 0 2 0 0 | * * * 320 * * * * * * | 1 0 0 1 0 x . x . x ♦ 8 | 4 0 4 0 4 | 0 2 0 2 0 0 0 0 2 0 | * * * * 480 * * * * * | 0 1 0 1 0 x . . x4x ♦ 16 | 8 0 0 8 8 | 0 0 4 4 0 0 0 0 0 2 | * * * * * 240 * * * * | 0 0 1 1 0 . x3x3x . ♦ 24 | 0 12 12 12 0 | 0 0 0 0 4 6 0 4 0 0 | * * * * * * 160 * * * | 1 0 0 0 1 . x3x . x ♦ 12 | 0 6 6 0 6 | 0 0 0 0 2 0 3 0 3 0 | * * * * * * * 320 * * | 0 1 0 0 1 . x . x4x ♦ 16 | 0 8 0 8 8 | 0 0 0 0 0 4 4 0 0 2 | * * * * * * * * 240 * | 0 0 1 0 1 . . x3x4x ♦ 48 | 0 0 24 24 24 | 0 0 0 0 0 0 0 8 12 6 | * * * * * * * * * 80 | 0 0 0 1 1 ----------+------+--------------------------+-----------------------------------------+----------------------------------------+--------------- x3x3x3x . ♦ 120 | 60 60 60 60 0 | 20 30 30 0 20 30 0 20 0 0 | 5 10 0 10 0 0 5 0 0 0 | 32 * * * * x3x3x . x ♦ 48 | 24 24 24 0 24 | 8 12 0 12 8 0 12 0 12 0 | 2 0 4 0 6 0 0 4 0 0 | * 80 * * * x3x . x4x ♦ 48 | 24 24 0 24 24 | 8 0 12 12 0 12 12 0 0 6 | 0 4 4 0 0 3 0 0 3 0 | * * 80 * * x . x3x4x ♦ 96 | 48 0 48 48 48 | 0 24 24 24 0 0 0 16 24 12 | 0 0 0 8 12 6 0 0 0 2 | * * * 40 * . x3x3x4x ♦ 384 | 0 192 192 192 192 | 0 0 0 0 64 96 96 64 96 48 | 0 0 0 0 0 0 16 32 24 8 | * * * * 10 snubbed forms: x3x3x3x4s, s3s3s3s4x, s3s3s3s4s
© 2004-2025 | top of page |