Acronym | gircope, K-4.125 |
Name | great-rhombicuboctahedron prism |
Segmentochoron display | |
Cross sections |
© |
Circumradius | sqrt[(7+3 sqrt(2))/2] = 2.370932 |
Coordinates | ((1+2 sqrt(2))/2, (1+sqrt(2))/2, 1/2, 1/2) & all permutations in all but last coord., all changes of sign |
Dihedral angles | |
Face vector | 96, 192, 124, 28 |
Confer |
|
External links |
As abstract polytope gircope is isomorphic to quitcope, thereby replacing octagons by octagrams, resp. replacing op by stop and girco by quitco.
The blend of 4 gircopes results in sirpdo.
Incidence matrix according to Dynkin symbol
x x3x4x . . . . | 96 | 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 --------+----+-------------+-------------------+--------- x . . . | 2 | 48 * * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 48 * * | 1 0 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 48 * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * * 48 | 0 0 1 0 1 1 | 0 1 1 1 --------+----+-------------+-------------------+--------- x x . . | 4 | 2 2 0 0 | 24 * * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 0 | * 24 * * * * | 1 0 1 0 x . . x | 4 | 2 0 0 2 | * * 24 * * * | 0 1 1 0 . x3x . | 6 | 0 3 3 0 | * * * 16 * * | 1 0 0 1 . x . x | 4 | 0 2 0 2 | * * * * 24 * | 0 1 0 1 . . x4x | 8 | 0 0 4 4 | * * * * * 12 | 0 0 1 1 --------+----+-------------+-------------------+--------- x x3x . ♦ 12 | 6 6 6 0 | 3 3 0 2 0 0 | 8 * * * x x . x ♦ 8 | 4 4 0 4 | 2 0 2 0 2 0 | * 12 * * x . x4x ♦ 16 | 8 0 8 8 | 0 4 4 0 0 2 | * * 6 * . x3x4x ♦ 48 | 0 24 24 24 | 0 0 0 8 12 6 | * * * 2 snubbed forms: x2s3s4x, x s3s4s, s2x3x4s, s2s3s4x, s2s3s4s
xx3xx4xx&#x → height = 1
(girco || girco)
o.3o.4o. | 48 * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 0 0 | 1 1 1 1 0
.o3.o4.o | * 48 | 0 0 0 1 1 1 1 | 0 0 0 1 1 1 1 1 1 | 0 1 1 1 1
------------+-------+----------------------+------------------------+-----------
x. .. .. | 2 0 | 24 * * * * * * | 1 1 0 1 0 0 0 0 0 | 1 1 1 0 0
.. x. .. | 2 0 | * 24 * * * * * | 1 0 1 0 1 0 0 0 0 | 1 1 0 1 0
.. .. x. | 2 0 | * * 24 * * * * | 0 1 1 0 0 1 0 0 0 | 1 0 1 1 0
oo3oo4oo&#x | 1 1 | * * * 48 * * * | 0 0 0 1 1 1 0 0 0 | 0 1 1 1 0
.x .. .. | 0 2 | * * * * 24 * * | 0 0 0 1 0 0 1 1 0 | 0 1 1 0 1
.. .x .. | 0 2 | * * * * * 24 * | 0 0 0 0 1 0 1 0 1 | 0 1 0 1 1
.. .. .x | 0 2 | * * * * * * 24 | 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1
------------+-------+----------------------+------------------------+-----------
x.3x. .. | 6 0 | 3 3 0 0 0 0 0 | 8 * * * * * * * * | 1 1 0 0 0
x. .. x. | 4 0 | 2 0 2 0 0 0 0 | * 12 * * * * * * * | 1 0 1 0 0
.. x.4x. | 8 0 | 0 4 4 0 0 0 0 | * * 6 * * * * * * | 1 0 0 1 0
xx .. ..&#x | 2 2 | 1 0 0 2 1 0 0 | * * * 24 * * * * * | 0 1 1 0 0
.. xx ..&#x | 2 2 | 0 1 0 2 0 1 0 | * * * * 24 * * * * | 0 1 0 1 0
.. .. xx&#x | 2 2 | 0 0 1 2 0 0 1 | * * * * * 24 * * * | 0 0 1 1 0
.x3.x .. | 0 6 | 0 0 0 0 3 3 0 | * * * * * * 8 * * | 0 1 0 0 1
.x .. .x | 0 4 | 0 0 0 0 2 0 2 | * * * * * * * 12 * | 0 0 1 0 1
.. .x4.x | 0 8 | 0 0 0 0 0 4 4 | * * * * * * * * 6 | 0 0 0 1 1
------------+-------+----------------------+------------------------+-----------
x.3x.4x. ♦ 48 0 | 24 24 24 0 0 0 0 | 8 12 6 0 0 0 0 0 0 | 1 * * * *
xx3xx ..&#x ♦ 6 6 | 3 3 0 6 3 3 0 | 1 0 0 3 3 0 1 0 0 | * 8 * * *
xx .. xx&#x ♦ 4 4 | 2 0 2 4 2 0 2 | 0 1 0 2 0 2 0 1 0 | * * 12 * *
.. xx4xx&#x ♦ 8 8 | 0 4 4 8 0 4 4 | 0 0 1 0 4 4 0 0 1 | * * * 6 *
.x3.x4.x ♦ 0 48 | 0 0 0 0 24 24 24 | 0 0 0 0 0 0 8 12 6 | * * * * 1
© 2004-2024 | top of page |