Acronym | gaquacint |
Name | great quasicellated penteractitriacontiditeron |
Field of sections |
© |
Circumradius | sqrt[65-20 sqrt(2)]/2 = 3.029675 |
Vertex figure |
© |
Coordinates | ((4 sqrt(2)-1)/2, (3 sqrt(2)-1)/2, (2 sqrt(2)-1)/2, (sqrt(2)-1)/2, 1/2) & all permutations, all changes of sign |
Face vector | 3840, 9600, 8160, 2640, 242 |
Confer |
|
External links |
As abstract polytope gaquacint is isomorphic to gacnet, thereby replacing octagrams by octagons, resp. stop by op and quitco by girco, resp. histodip by hodip, quitcope by gircope, and gaquidpoth by gidpith.
Incidence matrix according to Dynkin symbol
x3x3x3x4/3x . . . . . | 3840 | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 ------------+------+--------------------------+-----------------------------------------+----------------------------------------+--------------- x . . . . | 2 | 1920 * * * * | 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 . x . . . | 2 | * 1920 * * * | 1 0 0 0 1 1 1 0 0 0 | 1 1 1 0 0 0 1 1 1 0 | 1 1 1 0 1 . . x . . | 2 | * * 1920 * * | 0 1 0 0 1 0 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * * 1920 * | 0 0 1 0 0 1 0 1 0 1 | 0 1 0 1 0 1 1 0 1 1 | 1 0 1 1 1 . . . . x | 2 | * * * * 1920 | 0 0 0 1 0 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ------------+------+--------------------------+-----------------------------------------+----------------------------------------+--------------- x3x . . . | 6 | 3 3 0 0 0 | 640 * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 0 2 0 0 | * 960 * * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 0 2 0 | * * 960 * * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 0 2 | * * * 960 * * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . x3x . . | 6 | 0 3 3 0 0 | * * * * 640 * * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . x . x . | 4 | 0 2 0 2 0 | * * * * * 960 * * * * | 0 1 0 0 0 0 1 0 1 0 | 1 0 1 0 1 . x . . x | 4 | 0 2 0 0 2 | * * * * * * 960 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3x . | 6 | 0 0 3 3 0 | * * * * * * * 640 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x | 4 | 0 0 2 0 2 | * * * * * * * * 960 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 . . . x4/3x | 8 | 0 0 0 4 4 | * * * * * * * * * 480 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ------------+------+--------------------------+-----------------------------------------+----------------------------------------+--------------- x3x3x . . ♦ 24 | 12 12 12 0 0 | 4 6 0 0 4 0 0 0 0 0 | 160 * * * * * * * * * | 1 1 0 0 0 x3x . x . ♦ 12 | 6 6 0 6 0 | 2 0 3 0 0 3 0 0 0 0 | * 320 * * * * * * * * | 1 0 1 0 0 x3x . . x ♦ 12 | 6 6 0 0 6 | 2 0 0 3 0 0 3 0 0 0 | * * 320 * * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 0 6 6 0 | 0 3 3 0 0 0 0 2 0 0 | * * * 320 * * * * * * | 1 0 0 1 0 x . x . x ♦ 8 | 4 0 4 0 4 | 0 2 0 2 0 0 0 0 2 0 | * * * * 480 * * * * * | 0 1 0 1 0 x . . x4/3x ♦ 16 | 8 0 0 8 8 | 0 0 4 4 0 0 0 0 0 2 | * * * * * 240 * * * * | 0 0 1 1 0 . x3x3x . ♦ 24 | 0 12 12 12 0 | 0 0 0 0 4 6 0 4 0 0 | * * * * * * 160 * * * | 1 0 0 0 1 . x3x . x ♦ 12 | 0 6 6 0 6 | 0 0 0 0 2 0 3 0 3 0 | * * * * * * * 320 * * | 0 1 0 0 1 . x . x4/3x ♦ 16 | 0 8 0 8 8 | 0 0 0 0 0 4 4 0 0 2 | * * * * * * * * 240 * | 0 0 1 0 1 . . x3x4/3x ♦ 48 | 0 0 24 24 24 | 0 0 0 0 0 0 0 8 12 6 | * * * * * * * * * 80 | 0 0 0 1 1 ------------+------+--------------------------+-----------------------------------------+----------------------------------------+--------------- x3x3x3x . ♦ 120 | 60 60 60 60 0 | 20 30 30 0 20 30 0 20 0 0 | 5 10 0 10 0 0 5 0 0 0 | 32 * * * * x3x3x . x ♦ 48 | 24 24 24 0 24 | 8 12 0 12 8 0 12 0 12 0 | 2 0 4 0 6 0 0 4 0 0 | * 80 * * * x3x . x4/3x ♦ 48 | 24 24 0 24 24 | 8 0 12 12 0 12 12 0 0 6 | 0 4 4 0 0 3 0 0 3 0 | * * 80 * * x . x3x4/3x ♦ 96 | 48 0 48 48 48 | 0 24 24 24 0 0 0 16 24 12 | 0 0 0 8 12 6 0 0 0 2 | * * * 40 * . x3x3x4/3x ♦ 384 | 0 192 192 192 192 | 0 0 0 0 64 96 96 64 96 48 | 0 0 0 0 0 0 16 32 24 8 | * * * * 10
© 2004-2025 | top of page |