Acronym | tope, K-4.89 |
Name | truncated-octahedron prism |
Segmentochoron display | |
Cross sections |
© |
Circumradius | sqrt(11)/2 = 1.658312 |
Coordinates | (sqrt(2), 1/sqrt(2), 0, 1/2) & all permutations in all but last coord., all changes of sign |
Volume | 8 sqrt(2) = 11.313708 |
Dihedral angles | |
Face vector | 48, 96, 64, 16 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x x3x4o . . . . | 48 | 1 1 2 | 1 2 2 1 | 2 1 1 --------+----+----------+-------------+------ x . . . | 2 | 24 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 24 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 48 | 0 1 1 1 | 1 1 1 --------+----+----------+-------------+------ x x . . | 4 | 2 2 0 | 12 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 24 * * | 1 1 0 . x3x . | 6 | 0 3 3 | * * 16 * | 1 0 1 . . x4o | 4 | 0 0 4 | * * * 12 | 0 1 1 --------+----+----------+-------------+------ x x3x . ♦ 12 | 6 6 6 | 3 3 2 0 | 8 * * x . x4o ♦ 8 | 4 0 8 | 0 4 0 2 | * 6 * . x3x4o ♦ 24 | 0 12 24 | 0 0 8 6 | * * 2 snubbed forms: x2s3s4o, s2s3s4o
x x3x4/3o . . . . | 48 | 1 1 2 | 1 2 2 1 | 2 1 1 ----------+----+----------+-------------+------ x . . . | 2 | 24 * * | 1 2 0 0 | 2 1 0 . x . . | 2 | * 24 * | 1 0 2 0 | 2 0 1 . . x . | 2 | * * 48 | 0 1 1 1 | 1 1 1 ----------+----+----------+-------------+------ x x . . | 4 | 2 2 0 | 12 * * * | 2 0 0 x . x . | 4 | 2 0 2 | * 24 * * | 1 1 0 . x3x . | 6 | 0 3 3 | * * 16 * | 1 0 1 . . x4/3o | 4 | 0 0 4 | * * * 12 | 0 1 1 ----------+----+----------+-------------+------ x x3x . ♦ 12 | 6 6 6 | 3 3 2 0 | 8 * * x . x4/3o ♦ 8 | 4 0 8 | 0 4 0 2 | * 6 * . x3x4/3o ♦ 24 | 0 12 24 | 0 0 8 6 | * * 2
x x3x3x . . . . | 48 | 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 --------+----+-------------+-----------------+-------- x . . . | 2 | 24 * * * | 1 1 1 0 0 0 | 1 1 1 0 . x . . | 2 | * 24 * * | 1 0 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 24 * | 0 1 0 1 0 1 | 1 0 1 1 . . . x | 2 | * * * 24 | 0 0 1 0 1 1 | 0 1 1 1 --------+----+-------------+-----------------+-------- x x . . | 4 | 2 2 0 0 | 12 * * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 0 | * 12 * * * * | 1 0 1 0 x . . x | 4 | 2 0 0 2 | * * 12 * * * | 0 1 1 0 . x3x . | 6 | 0 3 3 0 | * * * 8 * * | 1 0 0 1 . x . x | 4 | 0 2 0 2 | * * * * 12 * | 0 1 0 1 . . x3x | 6 | 0 0 3 3 | * * * * * 8 | 0 0 1 1 --------+----+-------------+-----------------+-------- x x3x . ♦ 12 | 6 6 6 0 | 3 3 0 2 0 0 | 4 * * * x x . x ♦ 8 | 4 4 0 4 | 2 0 2 0 2 0 | * 6 * * x . x3x ♦ 12 | 6 0 6 6 | 0 3 3 0 0 2 | * * 4 * . x3x3x ♦ 24 | 0 12 12 12 | 0 0 0 4 6 4 | * * * 2 snubbed forms: x2s3s3s, s2s3s3s
s2x3x4s demi( . . . . ) | 48 | 1 1 1 1 | 1 1 1 2 1 | 1 1 2 ----------------+----+-------------+--------------+------ demi( . x . . ) | 2 | 24 * * * | 1 1 0 0 1 | 0 1 2 x demi( . . x . ) | 2 | * 24 * * | 1 0 1 1 0 | 1 1 1 x s 2 . s | 2 | * * 24 * | 0 1 0 2 0 | 1 0 2 q sefa( . . x4s ) | 2 | * * * 24 | 0 0 1 1 1 | 1 1 1 w ----------------+----+-------------+--------------+------ demi( . x3x . ) | 6 | 3 3 0 0 | 8 * * * * | 0 1 1 x3x s2x 2 s | 4 | 2 0 2 0 | * 12 * * * | 0 0 2 x2q . . x4s | 4 | 0 2 0 2 | * * 12 * * | 1 1 0 x2w sefa( s 2 x4s ) | 4 | 0 1 2 1 | * * * 24 * | 1 0 1 xw&#q sefa( . x3x4s ) | 6 | 3 0 0 3 | * * * * 8 | 0 1 1 x3w ----------------+----+-------------+--------------+------ s 2 x4s | 8 | 0 4 4 4 | 0 0 2 4 0 | 6 * * xw wx&#q rectangular trapezobiprisms . x3x4s | 24 | 12 12 0 12 | 4 0 6 0 4 | * 2 * x3x3w toe variant sefa( s2x3x4s ) | 12 | 6 3 6 3 | 1 3 0 3 1 | * * 8 xx3xw hexagonal podia (hip variant) starting figure: x x3x4x (mentioned just isogonal sizing represents mere alternation, i.e. without further rescaling back to uniformity)
xx3xx4oo&#x → height = 1
(toe || toe)
o.3o.4o. | 24 * | 1 2 1 0 0 | 2 1 1 2 0 0 | 1 2 1 0
.o3.o4.o | * 24 | 0 0 1 1 2 | 0 0 1 2 2 1 | 0 2 1 1
------------+-------+----------------+---------------+--------
x. .. .. | 2 0 | 12 * * * * | 2 0 1 0 0 0 | 1 2 0 0
.. x. .. | 2 0 | * 24 * * * | 1 1 0 1 0 0 | 1 1 1 0
oo3oo4oo&#x | 1 1 | * * 24 * * | 0 0 1 2 0 0 | 0 2 1 0
.x .. .. | 0 2 | * * * 12 * | 0 0 1 0 2 0 | 0 2 0 1
.. .x .. | 0 2 | * * * * 24 | 0 0 0 1 1 1 | 0 1 1 1
------------+-------+----------------+---------------+--------
x.3x. .. | 6 0 | 3 3 0 0 0 | 8 * * * * * | 1 1 0 0
.. x.4o. | 4 0 | 0 4 0 0 0 | * 6 * * * * | 1 0 1 0
xx .. ..&#x | 2 2 | 1 0 2 1 0 | * * 12 * * * | 0 2 0 0
.. xx ..&#x | 2 2 | 0 1 2 0 1 | * * * 24 * * | 0 1 1 0
.x3.x .. | 0 6 | 0 0 0 3 3 | * * * * 8 * | 0 1 0 1
.. .x4.o | 0 4 | 0 0 0 0 4 | * * * * * 6 | 0 0 1 1
------------+-------+----------------+---------------+--------
x.3x.4o. ♦ 24 0 | 12 24 0 0 0 | 8 6 0 0 0 0 | 1 * * *
xx3xx ..&#x ♦ 6 6 | 3 3 6 3 3 | 1 0 3 3 1 0 | * 8 * *
.. xx4oo&#x ♦ 4 4 | 0 4 4 0 4 | 0 1 0 4 0 1 | * * 6 *
.x3.x4.o ♦ 0 24 | 0 0 0 12 24 | 0 0 0 0 8 6 | * * * 1
xx3xx3xx&#x → height = 1
(toe || toe)
o.3o.4o. | 24 * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 0 0 | 1 1 1 1 0
.o3.o4.o | * 24 | 0 0 0 1 1 1 1 | 0 0 0 1 1 1 1 1 1 | 0 1 1 1 1
------------+-------+----------------------+----------------------+----------
x. .. .. | 2 0 | 12 * * * * * * | 1 1 0 1 0 0 0 0 0 | 1 1 1 0 0
.. x. .. | 2 0 | * 12 * * * * * | 1 0 1 0 1 0 0 0 0 | 1 1 0 1 0
.. .. x. | 2 0 | * * 12 * * * * | 0 1 1 0 0 1 0 0 0 | 1 0 1 1 0
oo3oo3oo&#x | 1 1 | * * * 24 * * * | 0 0 0 1 1 1 0 0 0 | 0 1 1 1 0
.x .. .. | 0 2 | * * * * 12 * * | 0 0 0 1 0 0 1 1 0 | 0 1 1 0 1
.. .x .. | 0 2 | * * * * * 12 * | 0 0 0 0 1 0 1 0 1 | 0 1 0 1 1
.. .. .x | 0 2 | * * * * * * 12 | 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1
------------+-------+----------------------+----------------------+----------
x.3x. .. | 6 0 | 3 3 0 0 0 0 0 | 4 * * * * * * * * | 1 1 0 0 0
x. .. x. | 4 0 | 2 0 2 0 0 0 0 | * 6 * * * * * * * | 1 0 1 0 0
.. x.3x. | 4 0 | 0 3 3 0 0 0 0 | * * 4 * * * * * * | 1 0 0 1 0
xx .. ..&#x | 2 2 | 1 0 0 2 1 0 0 | * * * 12 * * * * * | 0 1 1 0 0
.. xx ..&#x | 2 2 | 0 1 0 2 0 1 0 | * * * * 12 * * * * | 0 1 0 1 0
.. .. xx&#x | 2 2 | 0 0 1 2 0 0 1 | * * * * * 12 * * * | 0 0 1 1 0
.x3.x .. | 0 6 | 0 0 0 0 3 3 0 | * * * * * * 4 * * | 0 1 0 0 1
.x .. .x | 0 4 | 0 0 0 0 2 0 2 | * * * * * * * 6 * | 0 0 1 0 1
.. .x3.x | 0 6 | 0 0 0 0 0 2 2 | * * * * * * * * 4 | 0 0 0 1 1
------------+-------+----------------------+----------------------+----------
x.3x.3x. ♦ 24 0 | 12 12 12 0 0 0 0 | 4 6 4 0 0 0 0 0 0 | 1 * * * *
xx3xx ..&#x ♦ 6 6 | 3 3 0 6 3 3 0 | 1 0 0 3 3 0 1 0 0 | * 4 * * *
xx .. xx&#x ♦ 4 4 | 2 0 2 4 2 0 2 | 0 1 0 2 0 2 0 1 0 | * * 6 * *
.. xx3xx&#x ♦ 6 6 | 0 3 3 6 0 3 3 | 0 0 1 0 3 3 0 0 1 | * * * 4 *
.x3.x3.x ♦ 0 24 | 0 0 0 0 12 12 12 | 0 0 0 0 0 0 4 6 4 | * * * * 1
© 2004-2024 | top of page |